Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Surg ; 274(3): 473-480, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34238812

RESUMEN

OBJECTIVE: Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS: Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS: Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION: Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Inmunosupresores/farmacología , Trasplante de Riñón , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Profilaxis Antibiótica , Tolerancia Inmunológica , Macaca mulatta , Modelos Animales , Rituximab/farmacología , Porcinos , Tacrolimus/farmacología
2.
Immunogenetics ; 71(7): 479-487, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270568

RESUMEN

Xenotransplantation of pig organs into people may help alleviate the critical shortage of donors which faces organ transplantation. Unfortunately, human antibodies vigorously attack pig tissues preventing the clinical application of xenotransplantation. The swine leukocyte antigens (SLA), homologs of human HLA molecules, can be xenoantigens. SLA molecules, encoded by genes in the pig major histocompatibility complex, contribute to protective immune responses in pig. Therefore, simply inactivating them through genome engineering could reduce the ability of the human immune system to surveil transplanted pig organs for infectious disease or the development of neoplasms. A potential solution to this problem is to identify and modify epitopes in SLA proteins to eliminate their contribution to humoral xenoantigenicity while retaining their biosynthetic competence and ability to contribute to protective immunity. We previously showed that class II SLA proteins were recognized as xenoantigens and mutating arginine at position 55 to proline, in an SLA-DQ beta chain, could reduce human antibody binding. Here, we extend these observations by creating several additional point mutants at position 55. Using a panel of monoclonal antibodies specific for class II SLA proteins, we show that these mutants remain biosynthetically competent. Examining antibody binding to these variants shows that point mutagenesis can reduce, eliminate, or increase antibody binding to class II SLA proteins. Individual mutations can have opposite effects on antibody binding when comparing samples from different people. We also performed a preliminary analysis of creating point mutants near to position 55 to demonstrate that manipulating additional residues also affects antibody reactivity.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Epítopos/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Antígenos Heterófilos/genética , Arginina/genética , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Mutagénesis Sitio-Dirigida , Mutación Puntual , Porcinos
3.
Transplantation ; 103(8): 1620-1629, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30951017

RESUMEN

BACKGROUND: Highly sensitized patients are difficult to match with suitable renal allograft donors and may benefit from xenotransplant trials. We evaluate antibody binding from sensitized patients to pig cells and engineered single allele cells to identify anti-human leukocyte antigen (HLA) antibody cross-species reactivity with swine leukocyte antigen (SLA). These novel testing strategies assess HLA/SLA epitopes and antibody-binding patterns and introduce genetic engineering of SLA epitopes. METHODS: Sensitized patient sera were grouped by calculated panel reactive antibody and luminex single antigen reactivity profile and were tested with cloned GGTA1/CMAH/B4GalNT2 glycan knockout porcine cells. Pig reactivity was assessed by direct flow cytometric crossmatch and studied following elution from pig cells. To study the antigenicity of individual class I HLA and SLA alleles in cells, irrelevant sera binding to lymphoblastoid cells were minimized by CRISPR/Cas9 elimination of endogenous class I and class II HLA, B-cell receptor, and Fc receptor genes. Native HLA, SLA, and mutants of these proteins after mutating 144K to Q were assessed for antibody binding. RESULTS: Those with predominately anti-HLA-B&C antibodies, including Bw6 and Bw4 sensitization, frequently have low pig reactivity. Conversely, antibodies eluted from porcine cells are more commonly anti-HLA-A. Single HLA/SLA expressing engineered cells shows variable antigenicity and mutation of 144K to Q reduces antibody binding for some sensitized patients. CONCLUSIONS: Anti-HLA antibodies cross-react with SLA class I in predictable patterns, which can be identified with histocompatibility strategies, and SLA class I is a possible target of genetic engineering.


Asunto(s)
Epítopos/genética , Antígenos de Histocompatibilidad Clase I/genética , Trasplante de Riñón , Alelos , Animales , Modelos Animales de Enfermedad , Prueba de Histocompatibilidad , Humanos , Porcinos , Trasplante Heterólogo
4.
Ann Surg ; 268(4): 564-573, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30048323

RESUMEN

OBJECTIVE: Xenotransplantation using pig organs could end the donor organ shortage for transplantation, but humans have xenoreactive antibodies that cause early graft rejection. Genome editing can eliminate xenoantigens in donor pigs to minimize the impact of these xenoantibodies. Here we determine whether an improved cross-match and chemical immunosuppression could result in prolonged kidney xenograft survival in a pig-to-rhesus preclinical model. METHODS: Double xenoantigen (Gal and Sda) knockout (DKO) pigs were created using CRISPR/Cas. Serum from rhesus monkeys (n = 43) was cross-matched with cells from the DKO pigs. Kidneys from the DKO pigs were transplanted into rhesus monkeys (n = 6) that had the least reactive cross-matches. The rhesus recipients were immunosuppressed with anti-CD4 and anti-CD8 T-cell depletion, anti-CD154, mycophenolic acid, and steroids. RESULTS: Rhesus antibody binding to DKO cells is reduced, but all still have positive CDC and flow cross-match. Three grafts were rejected early at 5, 6, and 6 days. Longer survival was achieved in recipients with survival to 35, 100, and 435 days. Each of the 3 early graft losses was secondary to IgM antibody-mediated rejection. The 435-day graft loss occurred secondary to IgG antibody-mediated rejection. CONCLUSIONS: Reducing xenoantigens in donor pigs and chemical immunosuppression can be used to achieve prolonged renal xenograft survival in a preclinical model, suggesting that if a negative cross-match can be obtained for humans then prolonged survival could be achieved.


Asunto(s)
Antígenos Heterófilos/inmunología , Supervivencia de Injerto/inmunología , Terapia de Inmunosupresión/métodos , Inmunosupresores/farmacología , Trasplante de Riñón , Animales , Animales Modificados Genéticamente , Antígenos Heterófilos/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Supervivencia de Injerto/efectos de los fármacos , Inmunoglobulina M/inmunología , Macaca mulatta , Porcinos , Trasplante Heterólogo
5.
J Surg Res ; 229: 28-40, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29937002

RESUMEN

BACKGROUND: Tools for genome editing in pigs are improving rapidly so that making precise cuts in DNA for the purposes of deleting genes is straightforward. Development of means to replace pig genes with human genes with precision is very desirable for the future development of donor pigs for xenotransplantation. MATERIALS AND METHODS: We used Cas9 to cut pig thrombomodulin (pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomodulin. PhiC31 recombinase was used to remove the antibiotic selection marker to create porcine aortic endothelial cells expressing human instead of pTHBD, driven by the endogenous pig promoter. RESULTS: The promoterless selection cassette permitted efficient enrichment of cells containing correctly inserted transgene. Recombinase treatment of selected cells excised the resistance marker permitting expression of the human transgene by the endogenous pTHBD promoter. Gene regulation was maintained after gene replacement because pig endogenous promoter was kept intact in the correct position. CONCLUSIONS: Cas9 and recombinase technology make orthotopic human for pig gene exchange feasible and pave the way for creation of pigs with human genes that can be expressed in the appropriate tissues preserving gene regulation.


Asunto(s)
Edición Génica/métodos , Porcinos/genética , Trombomodulina/genética , Recolección de Tejidos y Órganos/métodos , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Endoteliales , Cultivo Primario de Células , Recombinasas/genética , Transfección/métodos , Proteínas Virales/genética
6.
J Immunol ; 200(8): 2957-2964, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540579

RESUMEN

Genetically engineered pig organs could provide transplants to all patients with end-stage organ failure, but Ab-mediated rejection remains an issue. This study examines the class II swine leukocyte Ag (SLA) as a target of epitope-restricted Ab binding. Transfection of individual α- and ß-chains into human embryonic kidney cells resulted in both traditional and hybrid class II SLA molecules. Sera from individuals on the solid organ transplant waiting list were tested for Ab binding and cytotoxicity to this panel of class II SLA single-Ag cells. A series of elution studies from an SLA-DQ cell line were performed. Our results indicate that human sera contain Abs specific for and cytotoxic against class II SLA. Our elution studies revealed that sera bind the SLA-DQ molecule in an epitope-restricted pattern. Site-specific mutation of one of these epitopes resulted in statistically decreased Ab binding. Humans possess preformed, specific, and cytotoxic Abs to class II SLA that bind in an epitope-restricted fashion. Site-specific epitope mutagenesis may decrease the Ab binding of highly sensitized individuals to pig cells.


Asunto(s)
Anticuerpos Heterófilos , Antígenos de Histocompatibilidad Clase I/inmunología , Trasplante Heterólogo , Animales , Humanos , Porcinos
7.
Transplantation ; 102(2): 249-254, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28846555

RESUMEN

BACKGROUND: Over 130 000 patients in the United States alone need a lifesaving organ transplant. Genetically modified porcine organs could resolve the donor organ shortage, but human xenoreactive antibodies destroy pig cells and are the major barrier to clinical application of xenotransplantation. The objective of this study was to determine whether waitlisted patients possess preformed antibodies to swine leukocyte antigen (SLA) class II, homologs of the class II HLA. METHODS: Sera from people currently awaiting solid organ transplant were tested for IgG binding to class II SLA proteins when expressed on mammalian cells. Pig fibroblasts were made positive by transfection with the class II transactivator. As a second expression system, transgenes encoding the alpha and beta chains of class II SLA were transfected into human embryonic kidney cells. RESULTS: Human sera containing IgG specific for class II HLA molecules exhibited greater binding to class II SLA positive cells than to SLA negative cells. Sera lacking antibodies against class II HLA showed no change in binding regardless of the presence of class II SLA. These antibodies could recognize either SLA-DR or SLA-DQ complexes. CONCLUSIONS: Class II SLA proteins may behave as xenoantigens for people with humoral immunity toward class II HLA molecules.


Asunto(s)
Antígenos Heterófilos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Animales , Humanos , Inmunoglobulina G/inmunología , Porcinos
8.
Transplantation ; 101(4): e86-e92, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28114170

RESUMEN

BACKGROUND: Antipig antibodies are a barrier to clinical xenotransplantation. We evaluated antibody binding of waitlisted renal transplant patients to 3 glycan knockout (KO) pig cells and class I swine leukocyte antigens (SLA). METHODS: Peripheral blood mononuclear cells from SLA identical wild type (WT), α1, 3-galactosyltransferase (GGTA1) KO, GGTA1/ cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) KO, and GGTA1/ CMAH /b1,4 N-acetylgalactosaminyl transferase (B4GalNT2) KO pigs were screened for human antibody binding using flow cytometric crossmatch (FCXM). Sera from 820 patients were screened on GGTA1/CMAH/B4GalNT2 KO cells and a subset with elevated binding was evaluated further. FCXM was performed on SLA intact cells and GGTA1/SLA class I KO cells after depletion with WT pig RBCs to remove cell surface reactive antibodies, but leave SLA antibodies. Lastly, human and pig reactive antibodies were eluted and tested for cross-species binding and reactivity to single-antigen HLA beads. RESULTS: Sequential glycan KO modifications significantly reduce antibody binding of waitlisted patients. Sera exhibiting elevated binding without reduction after depletion with WT RBCs demonstrate reduced binding to SLA class I KO cells. Human IgG, eluted from human and pig peripheral blood mononuclear cells, interacted across species and bound single-antigen HLA beads in common epitope-restricted patterns. CONCLUSIONS: Many waitlisted patients have minimal xenoreactive antibody binding to the triple KO pig, but some HLA antibodies in sensitized patients cross-react with class I SLA. SLA class I is a target for genome editing in xenotransplantation.


Asunto(s)
Anticuerpos Heterófilos/sangre , Antígenos Heterófilos/inmunología , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunidad Humoral , Inmunoglobulina G/sangre , Trasplante de Riñón , Oxigenasas de Función Mixta/inmunología , N-Acetilgalactosaminiltransferasas/inmunología , Listas de Espera , Animales , Animales Modificados Genéticamente , Antígenos Heterófilos/genética , Reacciones Cruzadas , Citometría de Flujo , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Genotipo , Antígenos HLA/inmunología , Histocompatibilidad , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II/genética , Prueba de Histocompatibilidad/métodos , Humanos , Oxigenasas de Función Mixta/deficiencia , Oxigenasas de Función Mixta/genética , N-Acetilgalactosaminiltransferasas/deficiencia , N-Acetilgalactosaminiltransferasas/genética , Fenotipo , Unión Proteica , Porcinos , Trasplante Heterólogo
9.
Transgenic Res ; 25(5): 751-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27100221

RESUMEN

UNLABELLED: The future of solid organ transplantation is challenged by an increasing shortage of available allografts. Xenotransplantation of genetically modified porcine organs offers an answer to this problem. Strategies of genetic modification have 'humanized' the porcine model towards clinical relevance. Most notably, these approaches have aimed at either antigen reduction or human transgene expression. The object of this study was to evaluate the relative effects of both antigen reduction and direct complement regulation on the human-anti-porcine complement dependent cytotoxicity response. Genetically modified animals were created through CRISPR/Cas9-directed mutation and human transgene delivery. Pigs doubly deficient in GGTA1 and CMAH genes were compared to pigs of the same background that expressed a human complement regulatory protein (hCRP). A third animal was made deficient in GGTA1, CMAH and B4GalNT2 gene expression. Cells from these animals were subjected to measures of human antibody binding and antibody-mediated complement-dependent cytotoxicity by flow cytometry. Human IgG and IgM antibody binding was unchanged between the double knockout and the transgenic hCRP double knockout pig. IgG and IgM binding was reduced by 49.1 and 43.2 % respectively by silencing the B4GalNT2 gene. Compared to the double knockout, human anti-porcine cytotoxicity was reduced by 8 % with the addition of a hCRP (p = .032); It was reduced by 21 % with silencing the B4GalNT2 gene (p = .012). CONCLUSIONS: Silencing the GGTA1, CMAH and B4GalNT2 genes in pigs achieved a significant antigen reduction. Changing the porcine carbohydrate profile effectively mediates human antibody-mediated complement dependent cytoxicity.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Citotoxicidad Inmunológica , Galactosiltransferasas/genética , Oxigenasas de Función Mixta/genética , N-Acetilgalactosaminiltransferasas/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Sistemas CRISPR-Cas/genética , Proteínas del Sistema Complemento/biosíntesis , Proteínas del Sistema Complemento/genética , Regulación de la Expresión Génica , Humanos , Trasplante de Órganos , Porcinos/inmunología , Trasplante Heterólogo
10.
Eur Phys J E Soft Matter ; 39(1): 4, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26802012

RESUMEN

Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.


Asunto(s)
Modelos Teóricos , Difusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA