Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36759012

RESUMEN

BACKGROUND: Tumor intracellular programmed cell death ligand-1 (PDL1) mediates pathologic signals that regulate clinical treatment responses distinctly from surface-expressed PDL1 targeted by αPDL1 immune checkpoint blockade antibodies. METHODS: We performed a drug screen for tumor cell PDL1 depleting drugs that identified Food and Drug Administration (FDA)-approved chlorambucil and also 9-[2-(phosphonomethoxy)ethyl] guanine. We used in vitro and in vivo assays to evaluate treatment and signaling effects of pharmacological tumor PDL1 depletion focused on chlorambucil as FDA approved, alone or plus αPDL1. RESULTS: PDL1-expressing mouse and human ovarian cancer lines and mouse melanoma were more sensitive to chlorambucil-mediated proliferation inhibition in vitro versus corresponding genetically PDL1-depleted lines. Orthotopic peritoneal PDL1-expressing ID8agg ovarian cancer and subcutaneous B16 melanoma tumors were more chlorambucil-sensitive in vivo versus corresponding genetically PDL1-depleted tumors. Chlorambucil enhanced αPDL1 efficacy in tumors otherwise αPDL1-refractory, and improved antitumor immunity and treatment efficacy in a natural killer cell-dependent manner alone and plus αPDL1. Chlorambucil-mediated PDL1 depletion was relatively tumor-cell selective in vivo, and treatment efficacy was preserved in PDL1KO hosts, demonstrating tumor PDL1-specific treatment effects. Chlorambucil induced PDL1-dependent immunogenic tumor cell death which could help explain immune contributions. Chlorambucil-mediated PDL1 reduction mechanisms were tumor cell-type-specific and involved transcriptional or post-translational mechanisms, including promoting PDL1 ubiquitination through the GSK3ß/ß-TRCP pathway. Chlorambucil-mediated tumor cell PDL1 depletion also phenocopied genetic PDL1 depletion in reducing tumor cell mTORC1 activation and tumor initiating cell content, and in augmenting autophagy, suggesting additional treatment potential. CONCLUSIONS: Pharmacological tumor PDL1 depletion with chlorambucil targets tumor-intrinsic PDL1 signaling that mediates treatment resistance, especially in αPDL1-resistant tumors, generates PDL1-dependent tumor immunogenicity and inhibits tumor growth in immune-dependent and independent manners. It could improve treatment efficacy of selected agents in otherwise treatment-refractory, including αPDL1-refractory cancers, and is rapidly clinically translatable.


Asunto(s)
Melanoma Experimental , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Clorambucilo/farmacología , Clorambucilo/uso terapéutico , Células Asesinas Naturales , Neoplasias Ováricas/tratamiento farmacológico , Estados Unidos , Antígeno B7-H1/inmunología
2.
J Immunother Cancer ; 9(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849925

RESUMEN

BACKGROUND: Anti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor ß (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1. METHODS: We studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites. RESULTS: IL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells. CONCLUSIONS: Mechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Subunidad beta del Receptor de Interleucina-2/agonistas , Interleucina-2/farmacología , Linfocitos Intraepiteliales/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Subunidad beta del Receptor de Interleucina-2/inmunología , Subunidad beta del Receptor de Interleucina-2/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...