Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Toxicol ; 2023: 7398724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854042

RESUMEN

Soy leghemoglobin (LegH) protein derived from soy (Glycine max) produced in Pichia pastoris (reclassified as Komagataella phaffii) as LegH Prep is a novel food ingredient that provides meat-like flavor and aroma to plant-derived food products. The safety of LegH Prep has been previously assessed in a battery of in vivo and in vitro testing and found no adverse effects under the conditions tested. In this new work, we present the results of new in vivo and in vitro tests evaluating the safety of LegH Prep. LegH Prep was nonmutagenic in a bacterial reverse mutation assay and nonclastogenic in an in vitro micronucleus assay in human lymphocytes. Systemic toxicity was evaluated in the 90 day dietary study in male and female Sprague-Dawley® rats that included a 28 day recovery period. The study resulted in no animal deaths associated with the administration of LegH Prep at the highest dose (90,000 ppm). There were no significant adverse clinical or physical changes attributed to LegH Prep administration, and no observed adverse effects on either male or female rats over the course of the 28 day recovery phase study. The new 90 day dietary toxicity study established a no observed adverse effect level (NOAEL) of 4798.3 and 5761.5 mg/kg/day, the maximum level tested for male and female rats, respectively. Thus, the results of the studies demonstrate that under the conditions tested, LegH Prep is not toxic for consumption in meat analog products.

2.
Regul Toxicol Pharmacol ; 119: 104817, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33171209

RESUMEN

The production of soy leghemoglobin C2 (LegH) by Pichia pastoris (syn. K. phaffii) was developed by Impossible Foods to serve as a sustainable source of flavor and aroma in plant-based meats. The potential allergenicity and toxicity of a LegH from a new production process was analyzed using bioinformatics, proteomics and a pepsin digestion assay on leghemoglobin, and residual host proteins. LegH in the new preparation had the same proteoform as in the previous preparations as well as in soy root nodule extracts. Results of seven Pichia proteins, each representing ≥1% of the total protein content, showed no significant sequence matches to any known allergens with the exception of one, which matched the highly conserved wheat GAPDH, whose protein homolog is found in fungi and humans. Based on the data, it is unlikely that there is any risk of cross reactivity between LegH Prep and GAPDH. Pichia protein sequences showed very good alignment to homologous proteins from many common yeasts including Saccharomyces sp. In addition, LegH and Pichia proteins were all rapidly digested in a pepsin digest assay. In conclusion, LegH Prep from this P. pastoris production process is unlikely to pose a risk of food allergenicity.


Asunto(s)
Alérgenos/toxicidad , Proteínas Fúngicas/toxicidad , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/toxicidad , Leghemoglobina/toxicidad , Saccharomycetales/genética , Alérgenos/química , Alérgenos/genética , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Leghemoglobina/química , Leghemoglobina/genética , Espectrometría de Masas , Proteómica
3.
Regul Toxicol Pharmacol ; 98: 140-150, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30048706

RESUMEN

A safety assessment was conducted for a symthetic variant Cytophaga sp. α-amylase enzyme expressed in Bacillus licheniformis and formulated into two distinct product formats: whole broth (a preparation in which the production organism is completely inactivated, but containing residual cell debris) and clarified preparation (from which the production organism is completely removed). The enzyme was improved via modern biotechnology techniques for use in the endohydrolysis of starch, glycogen, related polysaccharides and oligosaccharides. Applications range from carbohydrate processing, including the manufacture of sweeteners, fermentation to produce organic acids, amino acids and their salts, and potable or fuel alcohol, with resulting co-products (distillers' grains and corn gluten feed/meal) destined for use in animal feed. The toxicological studies summarized in this article (90-day rodent oral gavage and in vitro genotoxicity studies) noted no test article-related adverse effects and thus substantiate the safety of the α-amylase in not only the clarified form but also as a whole-broth preparation. Consistent with the decision tree analysis for enzymes produced with modern biotechnology techniques, this paper provides supporting information that this variant amylase with homology to an amylase from a potentially pathogenic organism (Cytophaga sp.) can be safely produced in an expression host that belongs to a Safe Strain Lineage, for safe use as processing aid to manufacture human and animal food.


Asunto(s)
Bacillus licheniformis/enzimología , Proteínas Bacterianas/biosíntesis , Cytophaga/enzimología , alfa-Amilasas/toxicidad , Administración Oral , Animales , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Cytophaga/genética , Femenino , Genes Bacterianos , Humanos , Microbiología Industrial , Linfocitos/efectos de los fármacos , Masculino , Pruebas de Mutagenicidad , Ratas , alfa-Amilasas/genética
4.
Nat Med ; 23(4): 450-460, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28288111

RESUMEN

Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-ß-catenin signaling. Constitutive activation of Wnt-ß-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Glioblastoma/genética , Infarto de la Arteria Cerebral Media/genética , Hemorragias Intracraneales/genética , Receptores Acoplados a Proteínas G/genética , Uniones Estrechas/metabolismo , Animales , Barrera Hematoencefálica/ultraestructura , Modelos Animales de Enfermedad , Células Endoteliales/ultraestructura , Matriz Extracelular/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioblastoma/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Hemorragias Intracraneales/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Microvasos , Pericitos/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Uniones Estrechas/ultraestructura , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA