Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 36(5): 73, 2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385754

RESUMEN

Liometopum apiculatum is a species of ants widely distributed in arid and semi-arid ecosystems where there is a relative food shortage compared with tropical ecosystems. L. apiculatum has established an ecological balance involving symbiotic interactions, which have allowed them to survive through mechanisms that are still unknown. Therefore, the aim of this study was to explore the metabolic potential of isolated bacteria from L. apiculatum using enzymatic activity assay and substrate assimilation. Results revealed a complex bacteria consortium belonging to Proteobacteria, Firmicutes, and Actinobacteria phylum. Most of the isolated bacteria showed activities associated with biopolymers degradation, from them Exiguobacterium and B. simplex showed the highest amylolytic activity (27 U/mg protein), while A. johnsonii and B. pumulis showed the highest cellulolytic and xylanolytic activities (1 and 2.9 U/mg protein, respectively). By other hand, some microorganisms such as S. ficaria, E. asburiae, P. agglomerans, A. johnsonii, S. rubidaea, S. marcescens, S. warneri, and M. hydrocarbonoxydans were able to grow up to 1000 mg/L of phthalates esters. These results not only revealed the important contribution of the symbionts in L apiculatum ants feeding habits, but also have shown a promising source of enzymes with potential biotechnological applications such as lignocellulosic biomass hydrolysis and bioremediation processes.


Asunto(s)
Hormigas/microbiología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota/fisiología , Animales , Bacterias/clasificación , Bacterias/enzimología , Biomasa , Celulosa/metabolismo , Hábitos , Hidrólisis , Larva/microbiología , Lignina/metabolismo , Polisacáridos/metabolismo , Simbiosis , Xilanos/metabolismo
2.
J Proteomics ; 143: 353-364, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27072113

RESUMEN

UNLABELLED: The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. BIOLOGICAL SIGNIFICANCE: Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under evolution and domestication of Opuntia and will provide a platform for basic biology research and gene discovery.


Asunto(s)
Domesticación , Opuntia/metabolismo , Proteómica/métodos , Aclimatación , Adaptación Fisiológica , Metabolismo de los Hidratos de Carbono , Frutas/anatomía & histología , Frutas/metabolismo , Metabolismo , Opuntia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA