Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412000

RESUMEN

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Amebicidas/farmacología , Muerte Celular , Apoptosis , Indoles/farmacología
2.
Antioxidants (Basel) ; 12(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38136200

RESUMEN

Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for health services. Therefore, there is a need to search for new active substances against Acanthamoebae. In the present study, we evaluated the amoebicidal activity of nitroxoline against the trophozoite and cyst stages of six different strains of Acanthamoeba. The strain A. griffini showed the lowest IC50 value in the trophozoite stage (0.69 ± 0.01 µM), while the strain A. castellanii L-10 showed the lowest IC50 value in the cyst stage (0.11 ± 0.03 µM). In addition, nitroxoline induced in treated trophozoites of A. culbertsoni features compatibles with apoptosis and autophagy pathways, including chromatin condensation, mitochondrial malfunction, oxidative stress, changes in cell permeability and the formation of autophagic vacuoles. Furthermore, proteomic analysis of the effect of nitroxoline on trophozoites revealed that this antibiotic induced the overexpression and the downregulation of proteins involved in the apoptotic process and in metabolic and biosynthesis pathways.

3.
Pathogens ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003827

RESUMEN

Few studies have been conducted in the cooling systems of power plants; they have focused on Naegleria fowleri, leaving a gap in the knowledge of other pathogenic free-living amoebae in this environment. The objective of this study was to determine the occurrence of saline-tolerant pathogenic Acanthamoeba in a geothermal power plant. The identification of isolated amoebae at genus level was carried out, observing their morphological characteristics; the determination of genotype and species of Acanthamoeba was performed via molecular biology (PCR). Water temperature ranged from 18 to 43 °C and conductivity from 4.0 × 104 to 8.7 × 104 µS/cm; this last value was greater than the seawater value. Only five amoeba genera were found. Acanthamoeba was in all the sampling sites, showing high saline tolerance. The high temperature, but mainly high conductivity, were the environmental conditions that determined the presence of pathogenic free-living amoebae in the hot water. All the strains of Acanthamoeba culbertsoni killed the mice, having a mortality of 40 to 100%. Acanthamoeba genotypes T10 and T5 were identified, T10 is rarely isolated from the environment, while T5 is more frequent. This is the first time that genotypes T5 and T10 have been reported in the environment in Mexico.

4.
J Water Health ; 21(3): 443-450, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37338323

RESUMEN

Despite the Naegleria genus being isolated from different natural environments such as water, soil, and air, not all Naegleria species are capable of causing infections in humans, and they are capable of completing their life cycle in environmental niches. However, the presence of this genus may suggest the existence of one of the highly pathogenic free-living amoeba (FLA) species: Naegleria fowleri or the brain-eating amoeba. This facultative parasitic protozoon represents a risk to public health, mainly related to domestic and agricultural waters. In this research, our main objective was to determine the existence of pathogenic protozoa in the Santa Cruz wastewater treatment plant, Santiago Island. Using 5 L of water we confirmed the presence of potentially pathogenic Naegleria australiensis, being the first report on Naegleria species in Cape Verde. This fact demonstrates the low efficiency in the treatment of wastewater and, consequently, a potential threat to public health. Nevertheless, more studies will be needed for the prevention and control of possible infections in this Macaronesian country.


Asunto(s)
Amoeba , Naegleria fowleri , Naegleria , Purificación del Agua , Humanos , Cabo Verde , Agua/parasitología
5.
Biomed Pharmacother ; 158: 114185, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916403

RESUMEN

Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1'-methoxyamentadione (5) and 6Z-1'-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Animales , Humanos , Amebicidas/farmacología , Trofozoítos , Citoesqueleto de Actina
6.
J Water Health, v. 21, n. 3, 443, mar. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4886

RESUMEN

Despite the Naegleria genus being isolated from different natural environments such as water, soil, and air, not all Naegleria species are capable of causing infections in humans, and they are capable of completing their life cycle in environmental niches. However, the presence of this genus may suggest the existence of one of the highly pathogenic free-living amoeba (FLA) species: Naegleria fowleri or the brain-eating amoeba. This facultative parasitic protozoon represents a risk to public health, mainly related to domestic and agricultural waters. In this research, our main objective was to determine the existence of pathogenic protozoa in the Santa Cruz wastewater treatment plant, Santiago Island. Using 5 L of water we confirmed the presence of potentially pathogenic Naegleria australiensis, being the first report on Naegleria species in Cape Verde. This fact demonstrates the low efficiency in the treatment of wastewater and, consequently, a potential threat to public health. Nevertheless, more studies will be needed for the prevention and control of possible infections in this Macaronesian country.

7.
Heliyon ; 8(11): e11625, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36439712

RESUMEN

Naegleria. fowleri, a protozoa belonging to the free-living amoeba group, is the causative agent of a central nervous system affecting disease that is fatal in more than the 95% of the reported cases. This parasite can be found in warm water bodies such as lakes, rivers or inadequately disinfected swimming pools. On the other hand, chlorination and UV light treatment are two of the most extensively used disinfection methods in recreational water facilities. In this study the effect of chlorination and UV light on N. fowleri trophozoites was studied in a close water circuit with the aim to assess the efficacy of this disinfection methods in large pools. The obtained results showed that the chlorination was able to decrease the number of viable cells despite the elimination was not totally achieved. Nonetheless, the combination of the UV light with the chlorination allowed the complete removal of the N. fowleri trophozoites from the water in experimental testing conditions.

8.
Eur J Pharm Biopharm ; 180: 11-22, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162636

RESUMEN

Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Amebicidas , Nanopartículas , Humanos , Queratitis por Acanthamoeba/tratamiento farmacológico , Administración Oftálmica , Amebicidas/farmacología , Amebicidas/uso terapéutico , Muerte Celular , Autofagia
9.
Mem Inst Oswaldo Cruz ; 117: e210373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792751

RESUMEN

Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil's Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.


Asunto(s)
Acanthamoeba , Amoeba , Encefalitis , Brasil , Movimiento Celular , Humanos
10.
Biomed Pharmacother ; 150: 113062, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658232

RESUMEN

The genus Acanthamoeba is characterized by being a group of ubiquitous and free-living amoebae that inhabit a variety of environments. Generally, human infections by this parasite are associated with Acanthamoeba keratitis, especially in contact lens wearers, and with chronic but fatal granulomatous amoebic meningoencephalitis. Current treatments used for eradication of amoeba from infection sites represent a challenge for pharmacotherapy, due to the lack of effective treatment and the amoebae highly resistant to anti-amoebic drugs. In this study, we describe the results of the assessment of the IC50 of 10 isobenzofuran-1(3H)-one derivatives (QOET) against four Acanthamoeba strains. The compounds QOET-3 and QOET-9 were the selected derivatives with the lowest IC50 in A. castellanii Neff trophozoites (73.71 ± 0.25 and 69.99 ± 15.32 µM, respectively). Interestingly, analysis of the compound effects on the cell apoptosis-like features showed that both active molecules triggered programmed cell death (PCD) in A. castellanii Neff. The results obtained in this study highlights that isobenzofuranone derivatives could represent an interesting source for developing novel antiamoebic drugs.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Queratitis por Acanthamoeba/parasitología , Amebicidas/farmacología , Animales , Muerte Celular , Humanos , Trofozoítos
11.
Parasitol Res ; 121(8): 2399-2404, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660958

RESUMEN

Free-living amoebae (FLA) are protozoa which have been reported in different countries worldwide from diverse sources (water, soil, dust, air), contributing to the environmental microbiological contamination. Most of the FLA species present a life cycle with two different phases: an active vegetative and physiologically form named trophozoite, and an extremely resistant phase called cyst. Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, Sapinia pedata, Vahlkampfia spp., Paravahlkampfia spp. and Vermamoeba vermiformis have been reported not only as causal agents of several opportunistic diseases including fatal encephalitis or epithelial disorders, but also as capable to favour the intracellular survival of common pathogenic bacteria, which could avoid the typical water disinfection systems, non-effective against FLAs cysts. Even though Santiago Island possesses high levels of humidity compared to the rest of the archipelago of Cape Verde, the water resources are scarce. Therefore, it is important to carry out proper microbiological quality controls, which currently do not contemplate the FLA presence in most of the countries. In the present work, we have reported the presence of Acanthamoeba spp. (69.2%); Vannella spp. (15.4%); Vermamoeba vermiformis (7.7%) and the recently discovered Stenamoeba dejonckheerei (7.7%) in different water sources of Santiago Island.


Asunto(s)
Acanthamoeba , Amoeba , Lobosea , Cabo Verde , Agua
12.
Pathogens ; 11(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631129

RESUMEN

Acanthamoeba is a free-living amoeba genus able to cause severe infections, such as Granulomatous amoebic encephalitis (GAE), epithelial disorders and a sight-threatening disease called Acanthamoeba keratitis (AK) [...].

13.
J Glob Antimicrob Resist ; 30: 468-473, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640869

RESUMEN

OBJECTIVES: Acanthamoeba keratitis is a severe corneal infection caused by a ubiquitous opportunistic protozoan pathogen known as acanthamoeba. For the last decade, the approach to treating this infection typically includes the use of polyhexamethylene biguanide (0.02%) and/or chlorhexidine (Chx) (0.02%). Although chlorhexidine is reportedly effective, its mode of action towards this type of cell is not clear. The aim of this work was to study the effect of chlorhexidine on the oxidative status of Acanthamoeba polyphaga. METHODS: The effect of chlorhexidine (Chx) on the oxidative state of Acanthamoeba polyphaga was studied using different antiradical methods including ABTS, DPPH and FRAP and measuring the activity of a couple of antioxidant enzyme namely SOD, NADH-FRD and SDH. RESULTS: The chlorhexidine was able to induce oxidative imbalance in cells by over expression of reactive oxygen species and/or inhibiting the antioxidant enzymes. In addition to enhancing the antiradical activity in response to oxidative stress, the present drug was able to reduce the activity of two antioxidant enzymes, superoxide dismutase (SOD) and reduced flavin adenine dinucleotide-fumarate reductase (NADH-FRD), to 30% and 40%, respectively. CONCLUSIONS: We could observe an increase of the antiradical capacity of cell's lysate supernatant, to cope with the overproduction of ROS. The imbalance state The inhibition of both SOD and NADH-FRD activities could have a major role in cell oxidative imbalance.


Asunto(s)
Acanthamoeba , Clorhexidina , Antioxidantes/farmacología , Clorhexidina/farmacología , NAD/farmacología , Estrés Oxidativo , Superóxido Dismutasa/farmacología
14.
Antibiotics (Basel) ; 11(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203882

RESUMEN

Acanthamoeba is a ubiquitous opportunistic protozoan pathogen that is known to cause blinding keratitis and rare, but usually fatal, granulomatous encephalitis. The difficulty in treating infections and the toxicity issues of the current treatments emphasize the need to use alternative agents with amoebicidal activity. The aim of this study was to evaluate the in vitro antiamoebic activity of three third-generation statins-cerivastatin, pitavastatin and rosuvastatin-against both cysts and trophozoites of the following four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. Furthermore, programmed cell death (PCD) induction traits were evaluated by measuring chromatin condensation, damages at the mitochondrial level, production of reactive oxygen species (ROS) and the distribution of actin cytoskeleton fibers. Acanthamoeba castellanii Neff was the strain most sensitive to all the statins, where cerivastatin showed the lowest amoebicidal activity for both trophozoite and cyst forms (0.114 ± 0.050 and 0.704 ± 0.129 µM, respectively). All the statins were able to cause DNA condensation, collapse in the mitochondrial membrane potential and a reduction in ATP level production, and disorganization of the total actin fibers in the cytoskeleton of all the evaluated Acanthamoeba strains. Our results showed that the tested statins were able to induce PCD compatible events in the treated amoebae, including chromatin condensation, collapse in the mitochondrial potential and ATP levels, cytoskeleton disassembly and ROS generation.

15.
Mem. Inst. Oswaldo Cruz ; 117: e210373, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1386340

RESUMEN

Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil's Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.

16.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34959620

RESUMEN

The protozoan parasite Leishmania causes a spectrum of diseases and there are over 1 million infections each year. Current treatments are toxic, expensive, and difficult to administer, and resistance to them is emerging. In this study, we screened the antileishmanial activity of the Pathogen Box compounds from the Medicine for Malaria Venture against Leishmania amazonensis, and compared their structures and cytotoxicity. The compounds MMV676388 (3), MMV690103 (5), MMV022029 (7), MMV022478 (9) and MMV021013 (10) exerted a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and intracellular amastigotes. Moreover, studies on the mechanism of cell death showed that compounds 3 and 5 induced an apoptotic process while the compounds 7, 9 and 10 seem to induce an autophagic mechanism. The present findings underline the potential of these five molecules as novel therapeutic leishmanicidal agents.

17.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34681237

RESUMEN

Primary amoebic encephalitis (PAM) caused by the opportunistic pathogen Naegleria fowleri is characterized as a rapid and lethal infection of the brain which ends in the death of the patient in more than 90% of the reported cases. This amoeba thrives in warm water bodies and causes infection after individuals perform risky activities such as splashing or diving, mostly in non-treated water bodies such as lakes and ponds. Moreover, the infection progresses very fast and no fully effective molecules have currently been found to treat PAM. In this study, naphthyridines fused with chromenes or chromenones previously synthetized by the group were tested in vitro against the trophozoite stage of two strains of N. fowleri. In addition, the most active molecule was evaluated in order to check the induction of programmed cell death (PCD) in the treated amoebae. Compound 3 showed good anti-Naegleria activity (61.45 ± 5.27 and 76.61 ± 10.84 µM, respectively) against the two different strains (ATCC® 30808 and ATCC® 30215) and a good selectivity compared to the cytotoxicity values (>300 µM). In addition, it was able to induce PCD, causing DNA condensation, damage at the cellular membrane, reduction in mitochondrial membrane potential and ATP levels, and ROS generation. Hence, naphthyridines fused with chromenes or chromenones could be potential therapeutic agents against PAM in the near future.

18.
Microorganisms ; 9(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34361894

RESUMEN

Free-Living Amoebae (FLA) are widely distributed protozoa, which contain some groups considered as pathogenic microorganisms. These members are able to produce several opportunistic diseases including epithelial disorders, such as keratitis and fatal encephalitis. Even though they have been reported in numerous sources, such as soils, dust and water, there is no legislation related to the presence of these protozoa in soil-related environments worldwide. Therefore, there are no established prevention or disinfection protocols to advise the population regarding FLA infections or eliminate these microorganisms from human-related environments to date. Acanthamoeba spp. are the most common FLA isolated in soil samples, which is also the most common genera found in clinical cases. Thus, the aim of the present study was to evaluate the presence of potentially pathogenic FLA in human-related soil samples of Santiago Island, Cabo Verde. A total of 26 soil samples were seeded in non-nutrient agar plates (2%), incubated at 26 °C, and monitored daily to evaluate the presence of FLA. DNA was extracted from those plates on which there was suspected FLA growth, and PCR amplification of the 18S rRNA gene was carried out. A total of 17 from the 26 analysed samples were positive for FLA, where Acanthamoeba is the most abundant isolated genus (14/17; 82.4%), with the T4 genotype being the most common (13/14; 92.9%), followed by the T5 genotype, A. lenticulata (1/14; 7.1%). Moreover, Vermamoeba vermiformis, Stenamoeba dejonckheerei and Vannella pentlandi were isolated in three other samples. To the best of our knowledge, this is the first report of FLA presence in Cape Verde and the first report of V. vermiformis in beach sand worldwide.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34411895

RESUMEN

Free-living amoebae of Acanthamoeba spp. are causative agents of human infections such as granulomatous amoebic encephalitis (GAE) and Acanthamoeba keratitis (AK). The exploration of innovative chemical entities from natural sources that induce intrinsic apoptotic pathway or a Programmed Cell Death (PCD) in Acanthamoeba protozoa is essential to develop new therapeutic strategies. In this work, the antiamoeboid activity of squamins C-F (1-4), four cyclooctapeptides isolated from Annona globiflora was tested in vitro against Acanthamoeba castellanii Neff, A. polyphaga, A. quina, and A. griffini, and a structure-activity relationship was also established. The most sensitive strain against all tested cyclooctapeptides was A. castellanii Neff being the R conformers of the S-oxo-methionine residue, squamins D (2) and F (4), the most active against the trophozoite stage. It is remarkable that all four peptides showed no cytotoxic effects against murine macrophages cell line J774A.1. The analysis of the mode of action of squamins C-F against A. castellanii indicate that these cyclopeptides induced the mechanisms of programmed cell death (PCD). All peptides trigger mitochondrial damages, significant inhibition of ATP production compared to the negative control, chromatin condensation and slight damages in membrane that affects its permeability despite it conserves integrity at the IC90 for 24 h. An increase in reactive oxygen species (ROS) was observed in all cases.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebiasis , Annona , Animales , Humanos , Ratones , Trofozoítos
20.
Parasitol Res ; 120(8): 3001-3005, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34251514

RESUMEN

Efficacious treatments against Acanthamoeba Keratitis (AK) is challenging, often ineffective and linked to the intragenotype variation in the drug efficacy. Increased oxygen can facilitate host response and can inhibit some organisms. Herein, we report the effect of increased oxygen concentrations on Acanthamoeba spp. growth and its effect on ROS (reactive oxygen species) production. The exposition to pure oxygen could reduce cell growth by at least 60% for Acanthamoeba castellanii Neff, Acanthamoeba polyphaga, and Acanthamoeba griffini. The increase in ROS production confirming that oxygen cell's growth inhibition was due to oxidative stress. Further studies are needed to determine oxygen saturation level, time of oxygen exposition, and number of sessions needed to eliminate the parasite.


Asunto(s)
Acanthamoeba castellanii , Estrés Oxidativo , Oxígeno , Acanthamoeba castellanii/crecimiento & desarrollo , Oxígeno/farmacología , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...