Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 530(2): 553-573, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34363623

RESUMEN

Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons.


Asunto(s)
Pollos/anatomía & histología , Columbidae/anatomía & histología , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Colículos Superiores/citología , Acetilcolina/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
2.
J Comp Neurol ; 529(14): 3410-3428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34176123

RESUMEN

The dorsal ventricular ridge (DVR), which is the largest component of the avian pallium, contains discrete partitions receiving tectovisual, auditory, and trigeminal ascending projections. Recent studies have shown that the auditory and the tectovisual regions can be regarded as complexes composed of three highly interconnected layers: an internal senso-recipient one, an intermediate afferent/efferent one, and a more external re-entrant one. Cells located in homotopic positions in each of these layers are reciprocally linked by an interlaminar loop of axonal processes, forming columnar-like local circuits. Whether this type of organization also extends to the trigemino-recipient DVR is, at present, not known. This question is of interest, since afferents forming this sensory pathway, exceptional among amniotes, are not thalamic but rhombencephalic in origin. We investigated this question by placing minute injections of neural tracers into selected locations of vital slices of the chicken telencephalon. We found that neurons of the trigemino-recipient nucleus basorostralis pallii (Bas) establish reciprocal, columnar and homotopical projections with cells located in the overlying ventral mesopallium (MV). "Column-forming" axons originated in B and MV terminate also in the intermediate strip, the fronto-trigeminal nidopallium (NFT), in a restricted manner. We also found that the NFT and an internal partition of B originate substantial, coarse-topographic projections to the underlying portion of the lateral striatum. We conclude that all sensory areas of the DVR are organized according to a common neuroarchitectonic motif, which bears a striking resemblance to that of the radial/laminar intrinsic circuits of the sensory cortices of mammals.


Asunto(s)
Pollos/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología , Vías Aferentes/fisiología , Animales , Axones/fisiología , Mapeo Encefálico , Femenino , Inmunohistoquímica , Masculino , Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/fisiología , Sensación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...