Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083330

RESUMEN

Optimization of retinal prostheses requires preclinical animal models that mimic features of human retinal disease, have appropriate eye sizes to accommodate implantable arrays, and provide options for unilateral degeneration so as to enable a contralateral, within-animal control eye. In absence of a suitable non-human primate model and shortcomings of our previous feline model generated through intravitreal injections of Adenosine Triphosphate (ATP), we aimed in the present study to develop an ATP induced degeneration model in the rabbit. Six normally sighted Dutch rabbits were monocularly blinded with this technique. Subsequent retinal degeneration was assessed with optical coherence tomography, electroretinography, and histological assays. Overall, there was a 42% and 26% reduction in a-wave and oscillatory potential amplitudes in the electroretinograms respectively, along with a global decrease in retinal thickness, with increased variability. Qualitative inspection also revealed that there were variable levels of retinal degeneration and remodeling both within and between treated eyes, mimicking the disease heterogeneity observed in retinitis pigmentosa. These findings confirm that ATP can be utilized to unilaterally induce blinding in rabbits and, potentially present an ideal model for future cortical recording experiments aimed at optimizing vision restoration strategies.Clinical Relevance- A rapid, unilaterally induced model of retinal degeneration in an animal with low binocular overlap and large eyes will allow for clinically valid recordings of downstream cortical activity following retinal stimulation. Such a model would be highly beneficial for the optimization of clinically appropriate vision restoration approaches.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Prótesis Visuales , Conejos , Animales , Gatos , Degeneración Retiniana/etiología , Adenosina Trifosfato/efectos adversos , Retina/patología
2.
J Vis Exp ; (195)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37318246

RESUMEN

It is important to study the development of retinal vasculature in retinopathies in which abnormal vessel growth can ultimately lead to vision loss. Mutations in the microphthalmia-associated transcription factor (Mitf) gene show hypopigmentation, microphthalmia, retinal degeneration, and in some cases, blindness. In vivo imaging of the mouse retina by noninvasive means is vital for eye research. However, given its small size, mouse fundus imaging is difficult and might require specialized tools, maintenance, and training. In this study, we have developed a unique software enabling analysis of the retinal vessel diameter in mice with an automated program written in MATLAB. Fundus photographs were obtained with a commercial fundus camera system following an intraperitoneal injection of a fluorescein salt solution. Images were altered to enhance contrast, and the MATLAB program permitted extracting the mean vascular diameter automatically at a predefined distance from the optic disk. The vascular changes were examined in wild-type mice and mice with various mutations in the Mitf gene by analyzing the retinal vessel diameter. The custom-written MATLAB program developed here is practical, easy to use, and allows researchers to analyze the mean diameter and mean total diameter, as well as the number of vessels from the mouse retinal vasculature, conveniently and reliably.


Asunto(s)
Disco Óptico , Enfermedades de la Retina , Ratones , Animales , Vasos Retinianos/diagnóstico por imagen , Angiografía con Fluoresceína/métodos , Fondo de Ojo
3.
Front Neuroanat ; 17: 997722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960036

RESUMEN

Introduction: A hallmark of photoreceptor degenerations is progressive, aberrant remodeling of the surviving retinal neurons and glia following photoreceptor loss. The exact relationship between neurons and glia remodeling in this late stage of retinal degeneration, however, is unclear. This study assessed this by examining Müller cell dysfunction via glutamine synthetase immunoreactivity and its spatial association with retinal neuron subpopulations through various cell markers. Methods: Aged Rd1 mice retinae (P150 - P536, n = minimum 5 per age) and control heterozygous rd1 mice retinae (P536, n = 5) were isolated, fixed and cryosectioned. Fluorescent immunolabeling of glutamine synthetase was performed and retinal areas quantified as having low glutamine synthetase immunoreactivity if proportion of labeled pixels in an area was less than two standard deviations of the mean of the total retina. Other Müller cell markers such as Sox9 and Glial fibrillary acidic protein along with neuronal cell markers Calbindin, Calretinin, recoverin, Protein kinase C-α, Glutamic acid decarboxylase 67, and Islet-1 were then quantified within areas of low and normal synthetase immunoreactivity. Results: Glutamine synthetase immunoreactivity was lost as a function of age in the rd1 mouse retina (P150 - P536). Immunoreactivity of other Müller cell markers, however, were unaffected suggesting Müller cells were still present in these low glutamine synthetase immunoreactive regions. Glutamine synthetase immunoreactivity loss affected specific neuronal populations: Type 2, Type 8 cone, and rod bipolar cells, as well as AII amacrine cells based on reduced recoverin, protein kinase Ca and parvalbumin immunoreactivity, respectively. The number of cell nuclei within regions of low glutamine synthetase immunoreactivity was also reduced suggesting possible neuronal loss rather than reduced cell marker immunoreactivity. Conclusion: These findings further support a strong interplay between glia-neuronal alterations in late-stage degeneration and highlight a need for future studies and consideration in intervention development.

4.
Acta Ophthalmol ; 100(8): 911-918, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35348289

RESUMEN

PURPOSE: Mice carrying pathogenic variants in the microphthalmia transcription factor (Mitf) gene show structural and functional changes in the retina and retinal pigment epithelium. The purpose of this study was to assess the vascular changes in Mitf mice carrying pathogenic variants by determining their retinal vessel diameter. METHODS: Mice examined in this study were: B6-Mitfmi-vga9/+ (n = 6), B6-Mitfmi-enu22(398) /Mitfmi-enu22(398) (n = 6) and C57BL/6J wild type mice (n = 6), all 3 months old. Fundus images were taken with a Micron IV camera after intraperitoneal injection of fluorescein salt. Images were adjusted to enhance contrast and a custom written MATLAB program used to extract the mean vascular diameter at a pre-defined distance from the optic disc. The number of vessels, mean diameter and mean total diameter were examined. RESULTS: The mean diameter of retinal veins in Mitfmi-enu22(398) /Mitfmi-enu22(398) mice was 18.8% larger than in wild type (p = 0.026). No differences in the mean diameter of the retinal arteries were found between the genotypes. Mitfmi-enu22(398) /Mitfmi-enu22(398) mice have 17.2% more retinal arteries (p = 0.026), and 15.6% more retinal veins (p = 0.041) than wild type. A 24.8% increase was observed in the mean combined arterial diameter in mice with the Mitfmi-enu22(398)/ Mitfmi-enu22(398) compared to wild type mice (p = 0.024). A 38.6% increase was found in the mean combined venular diameter in mice with the Mitfmi-enu22(398) /Mitfmi-enu22(398) pathogenic variation as compared to wild type (p = 0.004). The mean combined retinal venular diameter in the Mitfmi-vga9/+ mice was 17.8% larger than in wild type (p = 0.03). CONCLUSION: An increase in vascularization of the retina in Mitfmi-enu22(398) /Mitfmi-enu22(398) mice was found, indicating an increased demand for blood flow to the retina.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía , Microftalmía , Vasos Retinianos , Animales , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/genética , Microftalmía/genética , Mutación , Vasos Retinianos/patología
5.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32193365

RESUMEN

Neuroplasticity forms the basis for neuronal circuit complexity and differences between otherwise similar circuits. We show that the microphthalmia-associated transcription factor (Mitf) plays a central role in intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable, have a reduced A-type potassium current (IA) and exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA Furthermore, expression of the Mitf and Kcnd3 genes is activity dependent in OB projection neurons and the MITF protein activates expression from Kcnd3 regulatory elements. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habituation for an odorant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback and links neuronal activity, transcriptional changes and neuronal function.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía , Bulbo Olfatorio , Animales , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Neuronas , Odorantes , Olfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...