Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Pathol ; 59(3): 442-450, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35300540

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a hereditary sensory and motor peripheral neuropathy that is one of the most common inherited neurological diseases of humans and may be caused by mutations in a number of different genes. The subtype Charcot-Marie-Tooth disease type 4H (CMT4H) is caused by homozygous mutations in the FGD4 (FYVE, RhoGEF, and PH domain-containing 4) gene. A previous genome-wide association study involving 130,783 dairy cows found 6 novel variants, one of which was a homozygous splice site mutation in the FGD4 gene. Descendants of carriers were genotyped to identify 9 homozygous Holstein Friesian calves that were raised to maturity, of which 5 were euthanized and sampled for histopathology and electron microscopy at 2 and 2.5 years of age. Three control Holstein Friesian animals were raised with the calves and euthanized at the same time points. No macroscopic lesions consistent with CMT4H were seen at necropsy. Microscopically, peripheral nerves were hypercellular due to hyperplasia of S100-positive Schwann cells, and there was onion bulb formation, axonal degeneration with demyelination, and increased thickness of the endoneurium. On electron microscopy, decreased axonal density, onion bulb formations, myelin outfoldings, and increased numbers of mitochondria were present. These changes are consistent with those described in mouse models and humans with CMT4H, making these cattle a potential large animal model for CMT.


Asunto(s)
Enfermedades de los Bovinos , Enfermedad de Charcot-Marie-Tooth , Animales , Bovinos , Enfermedades de los Bovinos/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/veterinaria , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Proteínas de Microfilamentos , Mutación
2.
Genet Sel Evol ; 54(1): 5, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073835

RESUMEN

BACKGROUND: Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for recessive effects based on lactation traits. RESULTS: We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composition traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting dominance. CONCLUSIONS: We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield phenotypes acting as a better proxy of underlying biological disorders through presentation of a larger number of major recessive impacts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Femenino , Lactancia/genética , Leche , Fenotipo
3.
Genet Sel Evol ; 53(1): 62, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284721

RESUMEN

BACKGROUND: Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS: Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS: This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.


Asunto(s)
Bovinos/genética , Leche/química , Sitios de Carácter Cuantitativo , Animales , Estudio de Asociación del Genoma Completo , Hibridación Genética , Leche/normas , Oligosacáridos/análisis , Espectroscopía Infrarroja por Transformada de Fourier
4.
Nat Genet ; 53(7): 949-954, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34045765

RESUMEN

Mammalian species carry ~100 loss-of-function variants per individual1,2, where ~1-5 of these impact essential genes and cause embryonic lethality or severe disease when homozygous3. The functions of the remainder are more difficult to resolve, although the assumption is that these variants impact fitness in less manifest ways. Here we report one of the largest sequence-resolution screens of cattle to date, targeting discovery and validation of non-additive effects in 130,725 animals. We highlight six novel recessive loci with impacts generally exceeding the largest-effect variants identified from additive genome-wide association studies, presenting analogs of human diseases and hitherto-unrecognized disorders. These loci present compelling missense (PLCD4, MTRF1 and DPF2), premature stop (MUS81) and splice-disrupting (GALNT2 and FGD4) mutations, together explaining substantial proportions of inbreeding depression. These results demonstrate that the frequency distribution of deleterious alleles segregating in selected species can afford sufficient power to directly map novel disorders, presenting selection opportunities to minimize the incidence of genetic disease.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/etiología , Mutación con Pérdida de Función , Fenotipo , Alelos , Animales , Biomarcadores , Bovinos , Enfermedades de los Bovinos/epidemiología , Estudio de Asociación del Genoma Completo , Genotipo , Endogamia , Incidencia , Síndrome
5.
Front Genet ; 12: 747431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222511

RESUMEN

Copy number variants (CNVs), which are a class of structural variant, can be important in relating genomic variation to phenotype. The primary aims of this study were to discover the common CNV regions (CNVRs) in the dual-purpose XinJiang-Brown cattle population and to detect differences between CNVs inferred using the ARS-UCD 1.2 (ARS) or the UMD 3.1 (UMD) genome assemblies based on the 150K SNP (Single Nucleotide Polymorphisms) Chip. PennCNV and CNVPartition methods were applied to calculate the deviation of the standardized signal intensity of SNPs markers to detect CNV status. Following the discovery of CNVs, we used the R package HandyCNV to generate and visualize CNVRs, compare CNVs and CNVRs between genome assemblies, and identify consensus genes using annotation resources. We identified 38 consensus CNVRs using the ARS assembly with 1.95% whole genome coverage, and 33 consensus CNVRs using the UMD assembly with 1.46% whole genome coverage using PennCNV and CNVPartition. We identified 37 genes that intersected 13 common CNVs (>5% frequency), these included functionally interesting genes such as GBP4 for which an increased copy number has been negatively associated with cattle stature, and the BoLA gene family which has been linked to the immune response and adaption of cattle. The ARS map file of the GGP Bovine 150K Bead Chip maps the genomic position of more SNPs with increased accuracy compared to the UMD map file. Comparison of the CNVRs identified between the two reference assemblies suggests the newly released ARS reference assembly is better for CNV detection. In spite of this, different CNV detection methods can complement each other to generate a larger number of CNVRs than using a single approach and can highlight more genes of interest.

6.
Genet Sel Evol ; 51(1): 62, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703548

RESUMEN

BACKGROUND: White spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein-Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein-Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date. RESULTS: Using imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region. CONCLUSIONS: Our findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics.


Asunto(s)
Bovinos/genética , Mutación , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Pigmentación de la Piel/genética , Animales , Estudio de Asociación del Genoma Completo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción PAX3/genética , Proteínas Proto-Oncogénicas c-kit/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...