Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Neurobiol ; 36: 469-486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468048

RESUMEN

This chapter discusses multifractal texture estimation and characterization of brain lesions (necrosis, edema, enhanced tumor, nonenhanced tumor, etc.) in magnetic resonance (MR) images. This work formulates the complex texture of tumor in MR images using a stochastic model known as multifractional Brownian motion (mBm). Mathematical derivations of the mBm model and corresponding algorithm to extract the spatially varying multifractal texture feature are discussed. Extracted multifractal texture feature is fused with other effective features to enhance the tissue characteristics. Segmentation of the tissues is performed using a feature-based classification method. The efficacy of the mBm texture feature in segmenting different abnormal tissues is demonstrated using a large-scale publicly available clinical dataset. Experimental results and performance of the methods confirm the efficacy of the proposed technique in an automatic segmentation of abnormal tissues in multimodal (T1, T2, Flair, and T1contrast) brain MRIs.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología
2.
J Med Imaging (Bellingham) ; 10(6): 066004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38090646

RESUMEN

Purpose: We describe a method to identify repeatable liver computed tomography (CT) radiomic features, suitable for detection of steatosis, in nonhuman primates. Criteria used for feature selection exclude nonrepeatable features and may be useful to improve the performance and robustness of radiomics-based predictive models. Approach: Six crab-eating macaques were equally assigned to two experimental groups, fed regular chow or an atherogenic diet. High-resolution CT images were acquired over several days for each macaque. First-order and second-order radiomic features were extracted from six regions in the liver parenchyma, either with or without liver-to-spleen intensity normalization from images reconstructed using either a standard (B-filter) or a bone-enhanced (D-filter) kernel. Intrasubject repeatability of each feature was assessed using a paired t-test for all scans and the minimum p-value was identified for each macaque. Repeatable features were defined as having a minimum p-value among all macaques above the significance level after Bonferroni's correction. Features showing a significant difference with respect to diet group were identified using a two-sample t-test. Results: A list of repeatable features was generated for each type of image. The largest number of repeatable features was achieved from spleen-normalized D-filtered images, which also produced the largest number of second-order radiomic features that were repeatable and different between diet groups. Conclusions: Repeatability depends on reconstruction kernel and normalization. Features were quantified and ranked based on their repeatability. Features to be excluded for more robust models were identified. Features that were repeatable but different between diet groups were also identified.

3.
J Infect Dis ; 228(Suppl 4): S322-S336, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788501

RESUMEN

The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Inteligencia Artificial , Pandemias , Diagnóstico por Imagen/métodos , Enfermedades Transmisibles/diagnóstico por imagen
4.
Microbiol Spectr ; 11(3): e0349422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036346

RESUMEN

Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Humanos , Animales , Enfermedad del Virus de Marburg/diagnóstico por imagen , Enfermedad del Virus de Marburg/patología , Proyectos Piloto , Tomografía Computarizada por Rayos X , Progresión de la Enfermedad , Primates
5.
Acad Radiol ; 30(9): 2037-2045, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36966070

RESUMEN

RATIONALE AND OBJECTIVES: Animal modeling of infectious diseases such as coronavirus disease 2019 (COVID-19) is important for exploration of natural history, understanding of pathogenesis, and evaluation of countermeasures. Preclinical studies enable rigorous control of experimental conditions as well as pre-exposure baseline and longitudinal measurements, including medical imaging, that are often unavailable in the clinical research setting. Computerized tomography (CT) imaging provides important diagnostic, prognostic, and disease characterization to clinicians and clinical researchers. In that context, automated deep-learning systems for the analysis of CT imaging have been broadly proposed, but their practical utility has been limited. Manual outlining of the ground truth (i.e., lung-lesions) requires accurate distinctions between abnormal and normal tissues that often have vague boundaries and is subject to reader heterogeneity in interpretation. Indeed, this subjectivity is demonstrated as wide inconsistency in manual outlines among experts and from the same expert. The application of deep-learning data-science tools has been less well-evaluated in the preclinical setting, including in nonhuman primate (NHP) models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection/COVID-19, in which the translation of human-derived deep-learning tools is challenging. The automated segmentation of the whole lung and lung lesions provides a potentially standardized and automated method to detect and quantify disease. MATERIALS AND METHODS: We used deep-learning-based quantification of the whole lung and lung lesions on CT scans of NHPs exposed to SARS-CoV-2. We proposed a novel multi-model ensemble technique to address the inconsistency in the ground truths for deep-learning-based automated segmentation of the whole lung and lung lesions. Multiple models were obtained by training the convolutional neural network (CNN) on different subsets of the training data instead of having a single model using the entire training dataset. Moreover, we employed a feature pyramid network (FPN), a CNN that provides predictions at different resolution levels, enabling the network to predict objects with wide size variations. RESULTS: We achieved an average of 99.4 and 60.2% Dice coefficients for whole-lung and lung-lesion segmentation, respectively. The proposed multi-model FPN outperformed well-accepted methods U-Net (50.5%), V-Net (54.5%), and Inception (53.4%) for the challenging lesion-segmentation task. We show the application of segmentation outputs for longitudinal quantification of lung disease in SARS-CoV-2-exposed and mock-exposed NHPs. CONCLUSION: Deep-learning methods should be optimally characterized for and targeted specifically to preclinical research needs in terms of impact, automation, and dynamic quantification independently from purely clinical applications.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Animales , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Primates , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
6.
Acad Radiol ; 28 Suppl 1: S37-S44, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943333

RESUMEN

With the advent of deep learning, convolutional neural networks (CNNs) have evolved as an effective method for the automated segmentation of different tissues in medical image analysis. In certain infectious diseases, the liver is one of the more highly affected organs, where an accurate liver segmentation method may play a significant role to improve the diagnosis, quantification, and follow-up. Although several segmentation algorithms have been proposed for liver or liver-tumor segmentation in computed tomography (CT) of human subjects, none of them have been investigated for nonhuman primates (NHPs), where the livers have a wide range in size and morphology. In addition, the unique characteristics of different infections or the heterogeneous immune responses of different NHPs to the infections appear with a diverse radiodensity distribution in the CT imaging. In this study, we investigated three state-of-the-art algorithms; VNet, UNet, and feature pyramid network (FPN) for automated liver segmentation in whole-body CT images of NHPs. The efficacy of the CNNs were evaluated on 82 scans of 37 animals, including pre and post-exposure to different viruses such as Ebola, Marburg, and Lassa. Using a 10-fold cross-validation, the best performance for the segmented liver was provided by the FPN; an average 94.77% Dice score, and 3.6% relative absolute volume difference. Our study demonstrated the efficacy of multiple CNNs, wherein the FPN outperforms VNet and UNet for liver segmentation in infectious disease imaging research.


Asunto(s)
Enfermedades Transmisibles , Aprendizaje Profundo , Animales , Procesamiento de Imagen Asistido por Computador , Hígado/diagnóstico por imagen , Primates
7.
Artículo en Inglés | MEDLINE | ID: mdl-34354762

RESUMEN

This work proposes a novel framework for brain tumor segmentation prediction in longitudinal multi-modal MRI scans, comprising two methods; feature fusion and joint label fusion (JLF). The first method fuses stochastic multi-resolution texture features with tumor cell density feature to obtain tumor segmentation predictions in follow-up timepoints using data from baseline pre-operative timepoint. The cell density feature is obtained by solving the 3D reaction-diffusion equation for biophysical tumor growth modelling using the Lattice-Boltzmann method. The second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another state-of-the-art tumor growth and segmentation method, known as boosted Glioma Image Segmentation and Registration (GLISTRboost, or GB). We quantitatively evaluate both proposed methods using the Dice Similarity Coefficient (DSC) in longitudinal scans of 9 patients from the public BraTS 2015 multi-institutional dataset. The evaluation results for the feature-based fusion method show improved tumor segmentation prediction for the whole tumor(DSC WT = 0.314, p = 0.1502), tumor core (DSC TC = 0.332, p = 0.0002), and enhancing tumor (DSC ET = 0.448, p = 0.0002) regions. The feature-based fusion shows some improvement on tumor prediction of longitudinal brain tumor tracking, whereas the JLF offers statistically significant improvement on the actual segmentation of WT and ET (DSC WT = 0.85 ± 0.055, DSC ET = 0.837 ± 0.074), and also improves the results of GB. The novelty of this work is two-fold: (a) exploit tumor cell density as a feature to predict brain tumor segmentation, using a stochastic multi-resolution RF-based method, and (b) improve the performance of another successful tumor segmentation method, GB, by fusing with the RF-based segmentation labels.

8.
J Med Imaging (Bellingham) ; 6(2): 024501, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31037246

RESUMEN

A glioma grading method using conventional structural magnetic resonance image (MRI) and molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation analysis, and multiresolution fractal Brownian motion in structural MRI. The proposed method is evaluated using two multicenter MRI datasets: (1) the brain tumor segmentation (BRATS-2017) challenge for high-grade versus low-grade (LG) and (2) the cancer imaging archive (TCIA) repository for glioblastoma (GBM) versus LG glioma grading. The grading performance using MRI is compared with that of digital pathology (DP) images in the cancer genome atlas (TCGA) data repository. The results show that the mean area under the receiver operating characteristic curve (AUC) is 0.88 for the BRATS dataset. The classification of tumor grades using MRI and DP images in TCIA/TCGA yields mean AUC of 0.90 and 0.93, respectively. This work further proposes and compares tumor grading performance using molecular alterations (IDH1/2 mutations) along with MRI and DP data, following the most recent World Health Organization grading criteria, respectively. The overall grading performance demonstrates the efficacy of the proposed noninvasive glioma grading approach using structural MRI.

9.
Brainlesion ; 10670: 358-368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30016377

RESUMEN

Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis and survival prediction. This work extracts a total of 1207 different types of texture and other features, tests their significance and prognostic values, and then utilizes the most significant features with Random Forest regression model to perform survival prediction. We use 163 cases from BraTS17 training dataset for evaluation of the proposed model. A 10-fold cross validation offers normalized root mean square error of 30% for the training dataset and the cross validated accuracy of 63%, respectively.

10.
Proc SPIE Int Soc Opt Eng ; 101342017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28642629

RESUMEN

In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

11.
Med Image Anal ; 35: 250-269, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27475911

RESUMEN

Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org).


Asunto(s)
Algoritmos , Benchmarking , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Humanos
12.
Proc SPIE Int Soc Opt Eng ; 97852016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-27942094

RESUMEN

This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold cross-validation confirms the efficacy of the proposed method.

13.
Proc SPIE Int Soc Opt Eng ; 94142015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-27980354

RESUMEN

We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multi-fractional Brownian motion (mBm) [2]in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.

14.
IEEE Trans Med Imaging ; 34(10): 1993-2024, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25494501

RESUMEN

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Algoritmos , Benchmarking , Glioma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Neuroimagen/métodos , Neuroimagen/normas
15.
IEEE Trans Biomed Eng ; 60(11): 3204-15, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23807424

RESUMEN

A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.


Asunto(s)
Neoplasias Encefálicas/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Fractales , Humanos , Procesos Estocásticos , Análisis de Ondículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...