Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(9): e30604, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765134

RESUMEN

Residual pharmaceuticals in the environment are a class of emerging pollutants that endanger human health. Tetracycline's family, including oxytetracycline (OTC), are known as one of the most produced and consumed antibiotics worldwide. The g-C3N4/Fe3O4 nanocomposite with high level of catalytic efficiency features suitable performance in water/wastewater treatment. Therefore, in the present study, this nanocomposite was applied to remove the oxytetracycline from the aqueous environment. In this research study, g-C3N4/Fe3O4 nanocomposite (serving as catalyst) was initially synthesized by a simple hydrothermal method. The effect of key operating parameters such as initial solution pH, dose of catalyst, contact time and initial concentration of OTC in aqueous solutions was investigated under UV irradiation. In addition, COD and TOC tests, the kinetics and the effect of radical scavengers on the applied photocatalytic process were all evaluated. The maximum removal efficiency of OTC (99.8 %) was achieved under the following conditions: neutral solution pH 7; catalyst dose, 0.7 g/L; and an initial OTC concentration of 5 mg/L. The data showed that the kinetics of the reaction followed the first-order model with R2 of 0.9755. The respective COD and TOC efficiency values for the applied photocatalytic process were determined to be 87 and 59 %, respectively. In addition, the lowest removal efficiency of OTC was observed in the presence of tert-butanol radical scavengers, and OH radicals played a main role. The UV/g-C3N4/Fe3O4 photocatalytic process proved to be highly efficient for the removal of OTC antibiotic and could be potentially applied for the removal of other pollutants from aqueous solutions.

2.
Chemosphere ; 358: 142102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677611

RESUMEN

A heterogeneous catalyst was prepared by anchoring spinel cobalt ferrite nanoparticles on porous activated carbon (SCF@AC). The catalyst was tested to activate hydrogen peroxide (HP) in the Fenton degradation of metronidazole (MTZ). SCF nanoparticles were produced through the co-precipitation of iron and cobalt metal salts in an alkaline condition. Elemental mapping, physico-chemical, morphological, structural, and magnetic properties of the as-fabricated catalyst were analyzed utilizing EDX mapping, FESEM-EDS, TEM, BET, XRD, and VSM techniques. The porous structure of AC enhanced the catalytic activity of SCF by a significant decrease in the agglomeration of SCF nanoparticles. The effectiveness of SCF@AC in Fenton degradation improved substantially when UV light and ultrasound (US) irradiations were induced, most likely due to the strong synergistic effect between the catalyst and these irradiation sources. The photo-Fenton system was more efficient than the Fenton, sono-, and sono-photo-Fenton processes eliminating both MTZ and TOC. It was found that AC not only dispersed SCF nanoparticles and improved the stability of the catalyst, but also provided a high adsorption capacity of MTZ, resulting in a faster degradation. After 60 min of the photo-Fenton reaction, the elimination efficiencies of MTZ (30 mg L-1) and TOC were 97 and 42.1% under optimum operational conditions (pH = 3.0, HP = 4.0 mM, SCF@AC = 0.3 g L-1, and UV = 6 W). SCF@AC showed excellent stability with low leaching of metal ions during the reaction. Radical and non-radical (O2•-, HO•, and 1O2 species), alongside adsorption and photocatalysis mechanisms, were responsible for MTZ decontamination over the SCF@AC/HP/UV system. A comprehensive study on the HP activation mechanism and MTZ degradation pathway was obtained through scavenging tests. The findings demonstrate that SCF@AC is an effective, reusable, and environmentally sustainable catalyst for advanced oxidation processes that can effectively remove organic pollutants from wastewater. This study offers valuable insights into the feasibility of employing SCF@AC catalysts in Fenton-based processes for the degradation of MTZ.


Asunto(s)
Carbón Orgánico , Cobalto , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Metronidazol , Contaminantes Químicos del Agua , Cobalto/química , Catálisis , Peróxido de Hidrógeno/química , Compuestos Férricos/química , Hierro/química , Metronidazol/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Adsorción , Rayos Ultravioleta
3.
Sci Rep ; 13(1): 21829, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071282

RESUMEN

Environmental destruction, water crisis, and clean energy are among the very important challenges worldwide based on sustainable development goals. Photocatalytic fuel cell, a potential candidate for converting chemical energy into electrical energy through a pollution-free method, holds promise in addressing these challenges. In this regard, we investigated the response of a photoanode covered with UiO66-NH2-TiO2/NiF on a porous nickel foam as an attractive electrochemical response to remove antibiotics from aqueous solution and simultaneously produce electricity using a one-step hydrothermal synthesis. Nickel foam with its fine structure provides a suitable space for the interaction of light, catalyst, and efficient mass transfer of reactive molecules. It appears that it can be used as a competitive electrode in fuel cells. In order to investigate the properties of the photocatalyst, structural analyses including XRD, FESEM, FTIR, and UV-vis DRS were utilized. Additionally, polarization and electrochemical tests such as chronoamperometry and EIS were measured to further examine the electrochemical features of the PFC photoanode system. The obtained results under optimal conditions (SMZ concentration = 20 ppm, pH = 6, irradiation time = 120 min) were as follows: removal efficiency of 91.7%, Pmax = 16.98 µW/cm2, Jsc = 96.75 µA/cm2, Voc = 644 mV. The light-induced current flow in UiO66-NH2-TiO2/NiF exhibited prominent and reproducible photocurrent responses, indicating efficient and stable charge separation in TiO2/NiF composite materials, which is a promising strategy for pollutant removal and simultaneous electricity generation.

4.
Ecotoxicol Environ Saf ; 263: 115229, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441953

RESUMEN

Cantaloupe is a popular agricultural product in the hot season of Iran. On the other hand, the frequent use of pesticides in cantaloupe fields is the most important threat to the health of farmers and consumers. Therefore, the present study aims to measure the concentration of diazinon (DZN), chlorpyrifos (CPF), and malathion (MLT) in cantaloupe cultivated in Kashan and Aran-Bidgol (Iran) and to estimate the possible oral and dermal risk of these pesticides by Monte Carlo simulation (MCS). 36 cantaloupe samples, 18 samples before, and 18 samples after the latent period were collected from different places of cantaloupe cultivation from April to May 2021. After measuring the pesticides using the QuEChERS approach, oral and dermal risk assessments were calculated.The mean and standard deviation of the concentrations of chlorpyrifos, malathion, and diazinon in 18 cantaloupe samples, after the latent period, were (30.39 ± 13.85), (18.361 ± 1.8), and (21.97 ± 0.86) µg kg-1, respectively. Concentration of Malathion, diazinon, and Chlorpyrifos in the soil were 0.22, 0.25, and 0.3 mg kg-1, respectively, and pesticide cumulative risk assessment in soil was obtained 0.011 for Malathion, 0.05 for diazinon and 0.03 for Chlorpyrifos. Target Hazard Quotient (THQ) according to the cantaloupe consumption and dermal exposure in children and adults, was safe range. Although non-cancerous dermal and oral risk of cantaloupe is low, constant exposure can be harmful. Therefore, the findings of this study play an important role in increasing the understanding of the negative health consequences of pesticide contamination in cantaloupe for consumers, especially local residents, and can help by adopting remedial strategies to reduce environmental concerns.


Asunto(s)
Cloropirifos , Cucumis melo , Residuos de Plaguicidas , Plaguicidas , Adulto , Niño , Humanos , Residuos de Plaguicidas/análisis , Cloropirifos/análisis , Diazinón , Malatión , Suelo , Irán , Método de Montecarlo , Plaguicidas/análisis , Medición de Riesgo
5.
J Environ Manage ; 342: 118242, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295145

RESUMEN

Developing heterogeneous catalysts with high performance for peroxymonosulfate (PMS) activation to decontaminate organic pollutants from wastewater is of prominent importance. In this study, spinel cobalt ferrite (CoFe2O4) materials were coated on the surface of powdered activated carbon (CoFe2O4@PAC) via the facile co-precipitation method. The high specific surface area of PAC was beneficial for the adsorption of both bisphenol A (BP-A) and PMS molecules. The CoFe2O4@PAC-mediated PMS activation process under UV light could effectively eliminate 99.4% of the BP-A within 60 min of reaction. A significant synergy effect was attained between CoFe2O4 and PAC towards PMS activation and subsequent elimination of BP-A. Comparative tests demonstrated that the heterogeneous CoFe2O4@PAC catalyst had a better degradation performance in comparison with its components and homogeneous catalysts (Fe, Co, and, Fe + Co ions). The formed by-products and intermediates during BP-A decontamination were evaluated using LC/MS analysis, and then a possible degradation pathway was proposed. Moreover, the prepared catalyst exhibited excellent performance in recyclability with slight leaching amounts of Co and Fe ions. A TOC conversion of 38% was obtained after five consecutive reaction cycles. It can be concluded that the PMS photo-activation process via the CoFe2O4@PAC catalyst can be utilized as an effective and promising method for the degradation of organic contaminants from polluted-water resources.


Asunto(s)
Carbón Orgánico , Rayos Ultravioleta , Porosidad , Peróxidos , Cobalto
6.
Environ Res ; 229: 115843, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068722

RESUMEN

Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.


Asunto(s)
Fuentes de Energía Bioeléctrica , Reactores Biológicos , Electrólisis , Tecnología
7.
J Environ Manage ; 326(Pt A): 116584, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403318

RESUMEN

In this study, the photocatalytic activity of ZnO was effectively improved via its combination with spinel cobalt ferrite (SCF) nanoparticles. The catalytic performance of ZnO@SCF (ZSCF) was investigated in coupling with UV irradiation and ultrasound (US), as a heterogeneous sono-photocatalytic process, for the decontamination of phenanthrene (PHE) from contaminated soil. Soil washing tests were conducted in a batch environment, after extraction assisted by using Tween 80. Several characterization techniques such as XRD, FESEM-EDS, BET, TEM, UV-vis DRS, PL and VSM were utilized to determine the features of the as-prepared catalysts. ZSCF showed an excellent catalytic activity toward degradation of PHE in the presence of US and UV with a significant synergic effect. It was found that more than 93% of PHE (35 mg/L) and 87.5% of TOC could be eliminated by the integrated ZSCF/US/UV system under optimum operational conditions (pH: 8.0, ZSCF: 1.5 g/L, UV power: 6.0 W and US power: 70 W) within 90 min of reaction. After five times of use, ZSCF illustrated good reusability in the decontamination of PHE (87%) and TOC (79%). Quenching tests revealed the contribution of h+, HO• and e- species during PHE degradation over ZSCF/UV/US and an S-scheme photocatalytic mechanisms was proposed for the possible charge transfer routes under the ZSCF system. This study provides the important role of SCF in enhancing the ZnO photocatalytic activity due to its high performance, easy recovery and excellent durability, which it make an efficient and promising catalyst in environmental clean-up applications.


Asunto(s)
Tensoactivos , Óxido de Zinc , Suelo
8.
Environ Sci Pollut Res Int ; 30(2): 5126-5136, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35974284

RESUMEN

Persistent organic pollutants, such as polycyclic aromatic hydrocarbons, are hazardous trace contaminants frequently observed in food ingredients, such as edible oils. This study aimed to measure PAHs in forty brands of edible oils marketed in southwest Iran. Additionally, we characterized the daily intake of MOE and ILCR using Monte Carlo simulation. To analyze the content of PAHs, the liquid-liquid extraction method followed by GC-MS was utilized. The average concentration of PAHs was mostly lower than the maximum value for individual PAH (2 µg/Kg); however, the average concentration of fluorene (3.86 µg/Kg) and benzo(a)anthracene (3.13 µg/Kg) was more than the permitted level. The highest residual concentrations of PAHs were mostly observed in canola and corn oils. The daily intake of BaP and 4-PAH for 95% of consumers was 0.01 ng/kg BW/day and 0.04 ng/kg BW/day, respectively. Also, MOE was more than 10,000 for the percentiles of 5%, 50%, and 95%. The modeled ILCR showed that consumption of oil does not currently pose a cancer risk for Iranian consumers due to PAHs exposure. Concerning potential health risks, consumption of edible oils is safe; however, regular monitoring and assessment are required.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Irán , Hidrocarburos Policíclicos Aromáticos/análisis , Método de Montecarlo , Aceites de Plantas , Alimentos , Medición de Riesgo
9.
Waste Manag Res ; 41(2): 368-375, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35959868

RESUMEN

Littered waste is one of the ubiquitous problems in urban environments. In this study, urban environmental pollution was evaluated for the first time using a new developed index. The findings indicated that cigarette butts with an average 58% are the largest share in the composition of littered waste. In addition, the numbers of littered wastes throughout the study area had a spatial variation. According to clean environment index (CEI), the entire study area was found to be in a moderate status. However, 40% of the study areas were classified in a dirty and extremely dirty status. Comparison of the studied urban land-uses showed that residential land use with CEI equal to 3.38 is interpreted in the clean status, while commercial land use with CEI equal to 15.05 can be classified in the dirty status. The application of CEI has a good capability to assess littered waste; this index can be employed to evaluate the pollution of urban sidewalks and other environments such as beaches.


Asunto(s)
Monitoreo del Ambiente , Productos de Tabaco , Contaminación Ambiental , Residuos , Plásticos , Playas
10.
Sci Rep ; 12(1): 20336, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434119

RESUMEN

This study investigated the recycling of freshly-smoked cigarette butts (FCBs) and unsmoked cigarette filters (UCFs) into a cellulose acetate (CA) membrane. The both samples were prepared by means of a combination of seven cigarette brands, and the phase inversion method was used to recycle each sample into a membrane using N-methyl-2-pyrrolidone. The efficiency of the prepared membranes for the removal of chromium, cadmium, and lead from an aqueous solution in a forward osmosis reactor was investigated. The results showed that the both membranes had a smooth surface and macrovoids. The flux of the prepared membranes from the UCFs and FCBs recycling were 14.8 and 13.2 LMH, respectively. The porosity and reverse salt of the UCFs membrane were 61% and 3.5 gMH, while those for FCBs membrane were 58% and 3.9 gMH. The observed metal removal efficiency of the both membranes was in the range of 85 to 90%. However, increasing the concentration of metals up to five times caused a slight decrease in the removal efficiency (less than 5%).


Asunto(s)
Metales Pesados , Productos de Tabaco , Membranas Artificiales , Celulosa , Agua , Humo
11.
J Environ Health Sci Eng ; 20(1): 101-112, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35669829

RESUMEN

The present study, magnetically separable Fe2O3@ZnO/CQD nanocomposite was successfully prepared via hydrothermal process and characterized with SEM-EDX, XRD, FTIR, VSM and DRS analysis. The effect of operational parameters includes photocatalyst dosage, photocatalyst type, CQD content and Escherichia coli (E. coli) concentration were evaluated on the E. coli inactivation. The disinfecting ability of nanocomposite components was obtained as Fe2O3@ZnO/CQD> Fe2O3@ZnO> ZnO> Fe2O3> CQD which shows a synergetic effect among different components. The highest E. coli inactivation rate (Kmax=0.7606 min-1) was obtained at photocatalyst dosage of 0.2 g/L and 15% CQD content. The MIC and MBC values value for E. coli were determined 0.1172 mg/mL and 0.4948 respectively that the results tests proved the antibacterial functions of the Fe2O3@ZnO/CQD. Nanocomposite showed the high reusability after 4 consecutive cycles, Kmax decreased from 0.7606 min-1 to 0.6181 min-1. Quenching experiments showed •OH and h+ are the main reactive oxygen species involved in the E. coli inactivation.

12.
Environ Sci Pollut Res Int ; 29(37): 56403-56418, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35334054

RESUMEN

In this study photo-catalytic degradation of sulfamethoxazole (SMX) from aqueous solutions using carbon quantum dot (CQD)-decorated Cu-TiO2 was investigated. The as-prepared photo-catalyst samples were characterized by various FTIR, XRD, FE-SEM, TEM, EDX, BET, and DRS techniques. The investigation of effective photo-catalytic operational parameters confirmed that the complete removal of SMX (20 mg/L) can be accomplished at pH: 6.0 and light intensity: 75 mW/cm2 over a 30-min reaction time. DRS analysis demonstrated adding CQD to the Cu-TiO2 reduced its bandgap energy from 2.97 to 2.90 eV. The photo-catalytic degradation kinetics of SMX fit well with the pseudo-first-order model. The radical trapping experiment indicates that HO• and O2•- active species were more effective species for SMX degradation, and the higher inhibition effect on the SMX degradation efficiency was assigned to O2•- ions. The water matrix species-inhibited effect in SMX removal was as follows: SO42- > Cl- > NO3- > CO3- > no ions. The synthesized photo-catalyst could be recycled after six consecutive cycles of SMX degradation with an insignificant decrease in performance. The total organic carbon (TOC) analysis suggested the mineralization of SMZ by composite photo-catalysts. The minimum inhibitory concentration (MIC) for Escherichia coli remained at 12.5 mg L-1 SMX. A possible mechanism and pathway of SMX degradation in the photo-catalytic system was presented.


Asunto(s)
Sulfametoxazol/metabolismo , Titanio/química , Aguas Residuales/química , Contaminantes Químicos del Agua , Carbono , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas
13.
Rev Environ Health ; 37(4): 597-612, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34700370

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants containing several hydrocarbon rings affecting human health according to the published monitoring data. Most of these compounds can be absorbed by the soil and sediments due to the abundance of production resources of these compounds in the soil around the cities and sediments of the Iranian coast. Cancer risk assessment (CRA) is one of the most effective methods for quantifying the potentially harmful effects of PAHs on human health. In this study, the published papers that monitored PAHs in Iran's soil and sediments were reviewed. The extraction of different data and their equivalent factors were performed according to BaP equivalent, which is the main factor for calculating CRA of PAHs. The highest concentrations of PAHs were found in the sediments of Assaluyeh industrial zones (14,844 µg/kg), Khormousi region (1874.7 µg/kg), and Shadegan wetland (1749.5 µg/kg), respectively. Dermal exposure to sediments was 96% in adults, and 4% in children, and ingestion exposure to sediment was 99% in adults and 99.2% in children. Children dermal exposure to soil was 53%, and the accidental exposure to soil was 47%. In adults, dermal exposure to soil was 96% and the accidental exposure was 4%. The results of the present study indicated a significant, the carcinogenic risk of Polycyclic Aromatic Hydrocarbons in sediments of southern regions and soils of central regions of Iran is significant.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adulto , Niño , Humanos , Suelo , Irán/epidemiología , Contaminantes del Suelo/efectos adversos , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Sedimentos Geológicos , China
14.
Chemosphere ; 286(Pt 1): 131667, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34325256

RESUMEN

Excessive application of pesticides to control pests and weeds leads to contaminating bodies of water and health problems for consumers. The present study was designed to investigate the concentration of pesticides in raw water originated from the Marun River as well as the treated water of the drinking water treatment plant in Behbahan City. The efficiency of each treatment process was evaluated. Moreover, the health risks caused by detectable pesticides for consumers of treated water were assessed. The target pollutants were extracted using droplet liquid-liquid microextraction and detected by a gas chromatograph-mass spectrophotometer. The results showed relatively high mean concentrations of organophosphate pesticides ranging from 0.87 to 3.229 µg/L in the river water and low concentrations of organochlorine pesticides, except for 1,3-dichloropropene with the concentration of 3.58 µg/L. Alachlor had a rather high concentration (2.44 µg/L) in the river water. The concentration of pesticides in the drinking water had been reduced to an acceptable amount. The major part of pesticides removal occurred in coagulation-flocculation and rapid sand filtration units (87 %) due to the hydrophobic nature of pesticides and the use of GAC in the filtration unit. Based on the risk assessment estimates, the total hazard quotient (THQ) for all the pesticides was much less than one. The value of THQ was higher in younger individuals and children for all the given pesticides. The highest value of THQ in children was 0.2 which was attributed to aldrin. Similarly, the carcinogenic risk (CR) of aldrin for children and teenagers was in the unsafe range (more than 10-4) while the CR for other target compounds in all the age groups was negligible (10-4-10-6 or less). The high concentration of pesticides in the river water might be concerning and therefore selling and using pesticides, especially the banned ones, should be more regulated.


Asunto(s)
Agua Potable , Plaguicidas , Contaminantes Químicos del Agua , Adolescente , Niño , Monitoreo del Ambiente , Humanos , Irán , Método de Montecarlo , Plaguicidas/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
15.
AMB Express ; 11(1): 161, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860289

RESUMEN

Contamination of water with bacteria is one of the main causes of waterborne diseases. The photocatalytic method on the basis of bacterial inactivation seems to be a suitable disinfectant due to the lack of by-products formation. Herein, g-C3N4/Fe3O4/Ag nanocomposite combined with UV-light irradiation was applied for the inactivation two well-known bacteria namely, E. coli and B. subtilis. The nanocomposite was prepared by a hydrothermal method, and subsequently it was characterized by XRD, FT-IR, SEM, EDX and PL analyses. The optimum conditions established for the inactivation of both bacteria were as follows: nanocomposite dosage 3 g/L and bacterial density of 103 CFU/mL. In the meantime, the efficient inactivation of E. coli and B. subtilis took 30 and 150 min, respectively. The results also revealed that inactivation rate dropped with an increase in the bacterial density. It is also pointed out that OH˚ was found out to be the main radical species involved in the inactivation process. Finally, the kinetic results indicated that the inactivation of E. coli and B. subtilis followed the Weibull model. It is concluded that C3N4/Fe3O4/Ag nanocomposite along with UV-light irradiation is highly effective in inactivating E. coli and B. subtilis bacteria in the aqueous solutions.

16.
Environ Sci Pollut Res Int ; 28(35): 47741-47751, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34283355

RESUMEN

Landfilling is known to be the most widely used method in municipal solid waste management in many countries. Landfill leachate containing different recalcitrant compounds are recognized to contaminate the soil and water and accordingly threat both the human health and environment. A variety of chemical and biological methods have recently been employed for landfill leachate treatment, one of which is the ultrasonic process. In this review, the efficiency of the ultrasound-assisted method for leachate treatment, factors influencing the treatment process are studied by defining a search protocol. The results showed that ultrasound can reduce pollutants by creating cavitation, microstreaming, and microturbulence. Increasing turbidity in initial of irradiation time and increasing the cost of treatment are the disadvantages of using ultrasonic in leachate treatment. Moreover, ultrasound-assisted method leads to improve the leachate quality, especially the COD/BOD. Therefore, ultrasound can be considered a good pretreatment for biological processes. Although, the application of this process in combination with other treatment processes such as biological processes and advanced oxidation increases the efficiency of leachate treatment, its efficiency depends on several factors such as exploitation features and leachate quality.


Asunto(s)
Contaminantes Ambientales , Eliminación de Residuos , Administración de Residuos , Contaminantes Químicos del Agua , Humanos , Oxidación-Reducción , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Pollut Res Int ; 27(11): 11531-11540, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32124297

RESUMEN

Some studies have shown that exposure to polycyclic aromatic hydrocarbons (PAHs) is a dangerous factor for attention deficit hyperactivity disorder (ADHD). This systematic review and meta-analysis aimed to clarify this relationship, and to collect and analyze all the relevant evidences in published reports of epidemiologic studies. PubMed, Science Direct, Web of Science, Scopus, and Google Scholar databases were searched through September 31, 2018. The study quality was evaluated using the Newcastle-Ottawa Scale. Moreover, fixed- and random-effect models were used. The data in this meta-analysis were presented as adjusted odds ratio (AOR). From 959 articles, six articles were included in the systematic review, and for meta-analysis, one study (that was not AOR) was excluded. The participants included in the studies were 2799 with the age range of 5-15 years old, and 93.6% were living in America. Four of the studies were placed in one group, due to having a common author (Perera). Moreover, a significant association was found between PAH exposure and ADHD in these studies (odds ratio = 2.57, 95% CI = 1.75-3.78); however, in all studies, there was no significant association between PAH exposure and ADHD for children (overall odds ratio = 1.99, 95% CI = 0.96-4.11) with low heterogeneity (I2 = 28.73%; P value < 0.001). This study provided a systematic review and meta-analytic evidence for the association between PAH exposure and ADHD by a small number of studies. Further research study can be conducted in various countries. Graphical Abstract.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Hidrocarburos Policíclicos Aromáticos , Adolescente , Niño , Preescolar , Humanos , Oportunidad Relativa
18.
J Hazard Mater ; 390: 122050, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32007859

RESUMEN

In this paper, in-situ fabrication of tungsten oxide (WO3) on carbon nano-tube (CNT) was performed via sol-gel/hydrothermal method to prepare WO3/CNT nanocomposites and then coupled with visible light and ultrasound (US) irradiations for sono-photocatalytic removal of tetracycline (TTC) and pharmaceutical wastewater treatment. The as-prepared catalysts were characterized by FT-IR, XRD, TEM, UV-VIS DRS, FESEM, EDS, TGA, BET, BJH, EIS, and EDX techniques. The characterization tests, indicated successful incorporation of CTNs into the WO3 framework and efficient reduction of charge carries recombination rate after modifying with CNT. The investigation of experimental parameters verified that 60 mg/L TTC could be perfectly degraded at optimum operational parameters (WO3/CNT: 0.7 g/L, pH: 9.0, US power: 250 W/m2, and light intensity: 120 W/m2 over 60 min treatment. Trapping experiments results verified that HO radicals and h+ were the main oxidative species in degradation of TTC. The as-prepared photocatalysts could be reused after six successive cycles with an approximately 8.8 % reduction in removal efficiency. Investigation of the effect of real pharmaceutical wastewater revealed that this system is able to eliminate 83.7 and 90.6 % of TOC and COD, respectively after 220 min of reaction time. Some compounds with lower toxic impact and molecular weight, compared to raw pharmaceutical wastewater, were detected after treatment by sono-photocatalysis process. The biodegradability of real pharmaceutical wastewater was improved significantly after treatment by WO3/CNT sono-photocatalysis.


Asunto(s)
Antibacterianos/química , Luz , Nanotubos de Carbono/efectos de la radiación , Óxidos/efectos de la radiación , Tetraciclina/química , Tungsteno/efectos de la radiación , Ondas Ultrasónicas , Contaminantes Químicos del Agua/química , Catálisis , Industria Farmacéutica , Residuos Industriales , Nanocompuestos/química , Nanocompuestos/efectos de la radiación , Nanotubos de Carbono/química , Óxidos/química , Procesos Fotoquímicos , Tungsteno/química , Aguas Residuales , Purificación del Agua/métodos
19.
Ultrason Sonochem ; 55: 75-85, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31084793

RESUMEN

A combined system including sonocatalysis and photocatalysis was applied for catalytic degradation of tetracycline (TC) antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) in coupling with ultraviolet (UV) and ultrasound (US) irradiations. MAC was fabricated via magnetization of AC using Fe3O4 nanoparticles. FESEM, EDS, TEM, BET, XRD, PL, VSM and UV-visible DRS techniques were used to characterize the catalyst features. The performance of MAC@T/UV/US system was examined under impact of different input variable such as catalyst loading, solution pH, initial TC concentration, US power, scavenging agents, chemical oxidants and co-exiting anions. The degradation rate was enhanced substantially when MAC@T coupled with US and UV irradiations. At optimal conditions, over 93% TC and 50% TOC were removed under 180 min reaction. Whereas, the complete removal of TC was obtained after 60 min treatment, when MAC@T/UV/US coupled with oxidants. Decreasing sequence of the inhibitory effect of anions was chloride > bicarbonate > phosphate > nitrate > sulfate. Both Fe leaching and loss of the decontamination were slight with reused times, indicating MAC@T has a high stability and reusability. According to trapping tests, holes, OH and 1O2 were contributed in the degradation process. In conclusion, integration of MAC@T composite and US/UV for enhancing catalytic degradation efficiency can be introduced as a successful and promising technique, owing to excellent catalytic activity, easy recovery, good adsorption capacity and high durability and recycling potential.


Asunto(s)
Carbón Orgánico/química , Nanopartículas de Magnetita/química , Procesos Fotoquímicos , Tetraciclina/química , Titanio/química , Ondas Ultrasónicas , Rayos Ultravioleta , Antibacterianos/química , Catálisis , Concentración de Iones de Hidrógeno , Agua/química
20.
Med J Islam Repub Iran ; 32: 76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30643751

RESUMEN

Background: Air pollution is one of the main reasons for disease and emergency hospitalizations. Therefore, air pollution control and hospital preparedness are of paramount importance. This study was conducted to determine the association of air pollutant levels with the rate of hospital emergency admissions due to respiratory and cardiovascular diseases and acute myocardial infarction in Tehran during the last decade. Methods: This was a cross sectional study. At first, information on hourly concentration of air pollutants was gathered from Tehran Environmental Protection Agency and Air Quality Control Company. Raw data and meteorological parameters were used in Excel format to prepare an input file. The number of emergency hospital admissions due to pollutant exposure was assessed using the AirQ2.2.3 model. Results: Results of this study revealed that there were 54 352 cases of emergency hospitalizations due to respiratory diseases in a relative risk of 1.0048 [1.0008-1.0112] and 20 990 cases of emergency hospitalizations due to cardiovascular diseases in a relative risk of 1.009[1.006-1.013] during 2005-2014. In addition, 3478 patients were admitted to the emergency department because of acute myocardial infarction with RR of 1.0026 [1.0026-1.0101]. Conclusion: This study demonstrated that a high percentage of hospital emergency admissions was because of respiratory and cardiovascular diseases. Moreover, it was found that acute myocardial infarction could be due to the high level of air pollution and could increase admissions to the emergency department. Therefore, appropriate measures are needed to reduce air pollution and increase hospital preparedness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...