Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(19): 22854-22863, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141163

RESUMEN

Biocompatible and plastic neural interface devices allow for minimally invasive recording of brain activity. Increasing electrode density in such devices is essential for high-resolution neural recordings. Superimposing conductive leads in devices can help multiply the number of recording sites while keeping probes width small and suitable for implantation. However, because of leads' vertical proximity, this can create capacitive coupling (CC) between overlapping channels, which leads to crosstalk. Here, we present a thorough investigation of CC phenomenon in multi-gold layer thin-film multi-electrode arrays with a parylene C (PaC) insulation layer between superimposed leads. We also propose a guideline on the design, fabrication, and characterization of such type of neural interface devices for high spatial resolution recording. Our results demonstrate that the capacitance created through CC between superimposed tracks decreases non-linearly and then linearly with the increase of insulation thickness. We identify an optimal PaC insulation thickness that leads to a drastic reduction of CC between superimposed gold channels while not significantly increasing the overall device thickness. Finally, we show that double gold layer electrocorticography probes with the optimal insulation thickness exhibit similar performances in vivo when compared to single-layer devices. This confirms that these probes are adequate for high-quality neural recordings.


Asunto(s)
Electrocorticografía , Oro , Electrodos , Conductividad Eléctrica , Capacidad Eléctrica , Electrodos Implantados , Microelectrodos
2.
Adv Healthc Mater ; 5(16): 2001-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27242014

RESUMEN

Electronic textiles are an emerging field providing novel and non-intrusive solutions for healthcare. Conducting polymer-coated textiles enable a new generation of fully organic surface electrodes for electrophysiological evaluations. Textile electrodes are able to assess high quality muscular monitoring and to perform transcutaneous electrical stimulation.


Asunto(s)
Terapia por Estimulación Eléctrica , Electromiografía , Músculo Esquelético/fisiología , Textiles , Adulto , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Electrodos , Electromiografía/instrumentación , Electromiografía/métodos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA