Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
In Vitro Cell Dev Biol Anim ; 60(4): 420-431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546817

RESUMEN

Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.


Asunto(s)
Animales Recién Nacidos , Astrocitos , Ratas Wistar , Animales , Astrocitos/metabolismo , Células Cultivadas , Envejecimiento , Especies Reactivas de Oxígeno/metabolismo , Ratas , Estrés Oxidativo , Antioxidantes/metabolismo , Ácido Glutámico/metabolismo , Senescencia Celular , Glucosa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , FN-kappa B/metabolismo
2.
Neurochem Res ; 49(3): 732-743, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063948

RESUMEN

Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/ß receptor knockout (IFNα/ßR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/ßR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.


Asunto(s)
Astrocitos , Simvastatina , Ratones , Animales , Astrocitos/metabolismo , Simvastatina/farmacología , Ratones Noqueados , Factor de Necrosis Tumoral alfa/metabolismo , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Antiinflamatorios/farmacología , Colesterol/metabolismo , Células Cultivadas
3.
In Vitro Cell Dev Biol Anim ; 59(5): 366-380, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37353697

RESUMEN

Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/ß-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/ßR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.


Asunto(s)
Astrocitos , Receptores de Interferón , Ratas , Animales , Ratones , Resveratrol/farmacología , Resveratrol/metabolismo , Astrocitos/metabolismo , Receptores de Interferón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Wistar , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...