Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(20): 11239-11257, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811881

RESUMEN

BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.


Asunto(s)
Empalme Alternativo , Precursores del ARN , Apoptosis , Isoformas de Proteínas/genética , Precursores del ARN/genética , Sitios de Empalme de ARN , Humanos
2.
Chemistry ; 29(4): e202202427, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36286608

RESUMEN

G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.


Asunto(s)
G-Cuádruplex , ADN/química , Modelos Moleculares , Ligandos , Relación Estructura-Actividad
3.
Chem Commun (Camb) ; 57(81): 10632-10635, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34581337

RESUMEN

A novel strategy to design "turn-on" fluorescent receptors for G-quadruplexes of DNA is presented, which relies on the connection of phosphate binding macrocycles (PBM) with naphthalimide dyes. A new PBM-dye family was synthesized and evaluated in terms of binding and detection of nucleotides and DNA G-quadruplexes of different topologies.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Fosfatos/química , Colorantes Fluorescentes/síntesis química , G-Cuádruplex , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Espectrometría de Fluorescencia
4.
Org Biomol Chem ; 19(2): 379-386, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33325973

RESUMEN

Dynamic combinatorial libraries of acylhydrazones were prepared from diacylhydrazides and several cationic or neutral aldehydes in the presence of 5-methoxyanthranilic acid catalyst. Pull-down experiments with magnetic beads functionalized with a G-quadruplex (G4)-forming oligonucleotide led to the identification of putative ligands, which were resynthesized or emulated by close structural analogues. G4-binding properties of novel derivatives were assessed by fluorimetric titrations, mass spectrometry and thermal denaturation experiments, giving evidence of strong binding (Kd < 10 nM) for two compounds.

5.
Eur J Med Chem ; 178: 13-29, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173968

RESUMEN

The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 µM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 µM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.


Asunto(s)
Hidrazonas/farmacología , Evasión Inmune/efectos de los fármacos , Factores Inmunológicos/farmacología , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , G-Cuádruplex , Herpesvirus Humano 4/genética , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Ligandos , Ratones , ARN Mensajero/genética , Nucleolina
6.
Chemistry ; 24(48): 12638-12651, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29878408

RESUMEN

Six novel probes were prepared by covalent attachment of a G4-DNA ligand (bis(quinolinium) pyridodicarboxamide; PDC) to various coumarin or pyrene fluorophores. In the absence of DNA, the fluorescence of all probes is quenched due to intramolecular photoinduced electron transfer (PET), as evidenced by photophysical and electrochemical studies, molecular modeling, and DFT calculations. All probes demonstrate similarly high thermal stabilization of various G4-DNA substrates belonging to different folding topologies, as assessed by fluorescence melting experiments; however, their fluorimetric response is strongly heterogeneous with respect to the structures of the probes and G4-DNA targets. Thus, the probes containing the 7-diethylaminocoumarin fluorophore demonstrate significant fluorescence enhancement in the presence of G4-DNA, with the strongest "light-up" response (20- to 180-fold) observed for antiparallel G4 structures as well as for hybrid G4 structures, formed by the variants of human telomeric sequence and capable of a conformation change to the antiparallel isoform. These results shed light on the influence of the linker and electronic properties of fluorophores on the efficiency of G4-DNA "light-up" probes operating via PET.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , G-Cuádruplex , Amidas/química , Cumarinas/síntesis química , Cumarinas/química , Transporte de Electrón , Colorantes Fluorescentes/síntesis química , Humanos , Isomerismo , Ligandos , Luz , Simulación de Dinámica Molecular , Pirenos/síntesis química , Pirenos/química , Piridinas/química , Teoría Cuántica , Quinolinas/química , Compuestos de Quinolinio/síntesis química , Compuestos de Quinolinio/química , Telómero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...