Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Alzheimers Dement ; 20(5): 3364-3377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561254

RESUMEN

INTRODUCTION: We assessed whether macro- and/or micro-structural white matter properties are associated with cognitive resilience to Alzheimer's disease pathology years prior to clinical onset. METHODS: We examined whether global efficiency, an indicator of communication efficiency in brain networks, and diffusion measurements within the limbic network and default mode network moderate the association between amyloid-ß/tau pathology and cognitive decline. We also investigated whether demographic and health/risk factors are associated with white matter properties. RESULTS: Higher global efficiency of the limbic network, as well as free-water corrected diffusion measures within the tracts of both networks, attenuated the impact of tau pathology on memory decline. Education, age, sex, white matter hyperintensities, and vascular risk factors were associated with white matter properties of both networks. DISCUSSION: White matter can influence cognitive resilience against tau pathology, and promoting education and vascular health may enhance optimal white matter properties. HIGHLIGHTS: Aß and tau were associated with longitudinal memory change over ∼7.5 years. White matter properties attenuated the impact of tau pathology on memory change. Health/risk factors were associated with white matter properties.


Asunto(s)
Sustancia Blanca , Proteínas tau , Humanos , Sustancia Blanca/patología , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Imagen de Difusión Tensora , Pruebas Neuropsicológicas , Disfunción Cognitiva/patología , Factores de Riesgo
2.
Mov Disord ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661496

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) experience changes in behavior, personality, and cognition that can manifest even in the initial stages of the disease. Previous studies have suggested that mild behavioral impairment (MBI) should be considered an early marker of cognitive decline. However, the precise neurostructural underpinnings of MBI in early- to mid-stage PD remain poorly understood. OBJECTIVE: The aim was to explore the changes in white matter microstructure linked to MBI and mild cognitive impairment (MCI) in early- to mid-stage PD using diffusion magnetic resonance imaging (dMRI). METHODS: A total of 91 PD patients and 36 healthy participants were recruited and underwent anatomical MRI and dMRI, a comprehensive neuropsychological battery, and the completion of the Mild Behavioral Impairment-Checklist. Metrics of white matter integrity included tissue fractional anisotropy (FAt) and radial diffusivity (RDt), free water (FW), and fixel-based apparent fiber density (AFD). RESULTS: The connection between the left amygdala and the putamen was disrupted when comparing PD patients with MBI (PD-MBI) to PD-non-MBI, as evidenced by increased RDt (η2 = 0.09, P = 0.004) and both decreased AFD (η2 = 0.05, P = 0.048) and FAt (η2 = 0.12, P = 0.014). Compared to controls, PD patients with both MBI and MCI demonstrated increased FW for the connection between the left orbitofrontal gyrus (OrG) and the hippocampus (η2 = 0.22, P = 0.008), augmented RDt between the right OrG and the amygdala (η2 = 0.14, P = 0.008), and increased RDt (η2 = 0.25, P = 0.028) with decreased AFD (η2 = 0.10, P = 0.046) between the right OrG and the caudate nucleus. CONCLUSION: MBI is associated with abnormal microstructure of connections involving the orbitofrontal cortex, putamen, and amygdala. To our knowledge, this is the first assessment of the white matter microstructure in PD-MBI using dMRI. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Magn Reson Imaging ; 108: 11-21, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309376

RESUMEN

Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Encéfalo , Algoritmos , Artefactos , Imagen Eco-Planar/métodos
4.
J Med Imaging (Bellingham) ; 11(1): 014005, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38188934

RESUMEN

Purpose: Diffusion-weighted magnetic resonance imaging (DW-MRI) is a critical imaging method for capturing and modeling tissue microarchitecture at a millimeter scale. A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF). This function is the essential first step for the downstream tractography and connectivity analyses. With recent advantages in data sharing, large-scale multisite DW-MRI datasets are being made available for multisite studies. However, measurement variabilities (e.g., inter- and intrasite variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI. Most existing model-based methods [e.g., constrained spherical deconvolution (CSD)] and learning-based methods (e.g., deep learning) do not explicitly consider such variabilities in fODF modeling, which consequently leads to inferior performance on multisite and/or longitudinal diffusion studies. Approach: In this paper, we propose a data-driven deep CSD method to explicitly constrain the scan-rescan variabilities for a more reproducible and robust estimation of brain microstructure from repeated DW-MRI scans. Specifically, the proposed method introduces a three-dimensional volumetric scanner-invariant regularization scheme during the fODF estimation. We study the Human Connectome Project (HCP) young adults test-retest group as well as the MASiVar dataset (with inter- and intrasite scan/rescan data). The Baltimore Longitudinal Study of Aging dataset is employed for external validation. Results: From the experimental results, the proposed data-driven framework outperforms the existing benchmarks in repeated fODF estimation. By introducing the contrastive loss with scan/rescan data, the proposed method achieved a higher consistency while maintaining higher angular correlation coefficients with the CSD modeling. The proposed method is assessing the downstream connectivity analysis and shows increased performance in distinguishing subjects with different biomarkers. Conclusion: We propose a deep CSD method to explicitly reduce the scan-rescan variabilities, so as to model a more reproducible and robust brain microstructure from repeated DW-MRI scans. The plug-and-play design of the proposed approach is potentially applicable to a wider range of data harmonization problems in neuroimaging.

5.
Brain ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38243610

RESUMEN

Advanced methods of imaging and mapping the healthy and lesioned brain allowed to identify the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams, one hypothesis being that of a sub-cortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and post-operative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 T and 7 T datasets (n = 172), and operative microscope-assisted post-mortem fiber dissection (n = 12). We demonstrate the presence of four fundamental fiber contingents: i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century, and destined to the anterior temporal lobe; ii) the Optic Radiations (OR)-like component, that leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; iii) the lateral component, that crosses orthogonally the temporal stem and reaches the middle temporal gyrus; and iv) the Auditory Radiations (AR)-like component, that leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.

6.
Pain ; 165(3): 565-572, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862047

RESUMEN

ABSTRACT: This study aimed to characterize the sensory responses observed when electrically stimulating the white matter surrounding the posterior insula and medial operculum (PIMO). We reviewed patients operated on under awake conditions for a glioma located in the temporoparietal junction. Patients' perceptions were retrieved from operative reports. Stimulation points were registered in the Montreal Neurological Institute template. A total of 12 stimulation points in 8 patients were analyzed. Painful sensations in the contralateral leg were reported (5 sites in 5 patients) when stimulating the white matter close to the parcel OP2/3 of the Glasser atlas. Pain had diverse qualities: burning, tingling, crushing, or electric shock. More laterally, in the white matter of OP1, pain and heat sensations in the upper part of the body were described (5 sites in 2 patients). Intermingled with these sites, vibration sensations were also reported (3 sites in 2 patients). Based on the tractograms of 44 subjects from the Human Connectome Project data set, we built a template of the pathways linking the thalamus to OP2/3 and OP1. Pain sites were located in the thalamo-OP2/3 and thalamo-OP1 tracts. Heat sites were located in the thalamo-OP1 tract. In the 227 awake surgeries performed for a tumor located outside of the PIMO region, no patients ever reported pain or heat sensations when stimulating the white matter. Thus, we propose that the thalamo-PIMO connections constitute the main cortical inputs for nociception and thermoception and emphasize that preserving these fibers is of utmost importance to prevent the postoperative onset of a debilitating insulo-opercular pain syndrome.


Asunto(s)
Terapia por Estimulación Eléctrica , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Calor , Vibración , Dolor/etiología , Percepción del Dolor/fisiología , Sensación Térmica , Mapeo Encefálico
7.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808645

RESUMEN

Characterizing how, when and where the human brain changes across the lifespan is fundamental to our understanding of developmental processes of childhood and adolescence, degenerative processes of aging, and divergence from normal patterns in disease and disorders. We aimed to provide detailed descriptions of white matter pathways across the lifespan by thoroughly characterizing white matter microstructure, white matter macrostructure, and morphology of the cortex associated with white matter pathways. We analyzed 4 large, high-quality, publicly-available datasets comprising 2789 total imaging sessions, and participants ranging from 0 to 100 years old, using advanced tractography and diffusion modeling. We first find that all microstructural, macrostructural, and cortical features of white matter bundles show unique lifespan trajectories, with rates and timing of development and degradation that vary across pathways - describing differences between types of pathways and locations in the brain, and developmental milestones of maturation of each feature. Second, we show cross-sectional relationships between different features that may help elucidate biological changes occurring during different stages of the lifespan. Third, we show unique trajectories of age-associations across features. Finally, we find that age associations during development are strongly related to those during aging. Overall, this study reports normative data for several features of white matter pathways of the human brain that will be useful for studying normal and abnormal white matter development and degeneration.

8.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37824529

RESUMEN

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Asunto(s)
Sustancia Blanca , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Imagen por Resonancia Magnética
9.
Artículo en Inglés | MEDLINE | ID: mdl-37621418

RESUMEN

Nonlinear gradients impact diffusion weighted MRI by introducing spatial variation in estimated diffusion tensors. Recent studies have shown that increasing signal-to-noise ratios and the use of ultra-strong gradients may lead to clinically significant impacts on analyses due to these nonlinear gradients in microstructural measures. These effects can potentially bias tractography results and cause misinterpretation of data. Herein, we characterize the impact of an "approximate" gradient nonlinearity correction technique in tractography using empirically derived gradient nonlinear fields. This technique scales the diffusion signal by the change in magnitude due to the gradient nonlinearities, without concomitant correction of gradient direction errors. The impact of this correction on tractography is assessed through white matter bundle segmentation and connectomics via bundle-wise volume, fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, primary eigenvector, and length; as well as the modularity, global efficiency, and characteristic path length connectomics graph measures. We investigate the differences between (1) these measures directly and (2) the within session variability of these measures before and after approximate correction in 61 subjects from the MASiVar pediatric reproducibility dataset. We find approximate correction results is little to no differences on the population level, but large differences on the subject-specific level for both the measures directly and their within session variability. Thus, this study suggests though approximate correction of gradient nonlinearities may not change tractography findings on the population level, subject-specific interpretations may exhibit large fluctuations. A limitation is the lack of comparison with the empirical voxel-wise gradient table correction.

10.
Neuroimage ; 279: 120288, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495198

RESUMEN

White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework allows for the transition from one anatomical bundle definition to another with marginal calibration efforts. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundle segmentation framework.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Disección , Encéfalo/diagnóstico por imagen
11.
Artículo en Inglés | MEDLINE | ID: mdl-37465840

RESUMEN

Crohn's disease (CD) is a debilitating inflammatory bowel disease with no known cure. Computational analysis of hematoxylin and eosin (H&E) stained colon biopsy whole slide images (WSIs) from CD patients provides the opportunity to discover unknown and complex relationships between tissue cellular features and disease severity. While there have been works using cell nuclei-derived features for predicting slide-level traits, this has not been performed on CD H&E WSIs for classifying normal tissue from CD patients vs active CD and assessing slide label-predictive performance while using both separate and combined information from pseudo-segmentation labels of nuclei from neutrophils, eosinophils, epithelial cells, lymphocytes, plasma cells, and connective cells. We used 413 WSIs of CD patient biopsies and calculated normalized histograms of nucleus density for the six cell classes for each WSI. We used a support vector machine to classify the truncated singular value decomposition representations of the normalized histograms as normal or active CD with four-fold cross-validation in rounds where nucleus types were first compared individually, the best was selected, and further types were added each round. We found that neutrophils were the most predictive individual nucleus type, with an AUC of 0.92 ± 0.0003 on the withheld test set. Adding information improved cross-validation performance for the first two rounds and on the withheld test set for the first three rounds, though performance metrics did not increase substantially beyond when neutrophils were used alone.

12.
Neuroimage ; 277: 120231, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37330025

RESUMEN

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Método de Montecarlo , Fantasmas de Imagen
13.
Artículo en Inglés | MEDLINE | ID: mdl-37228707

RESUMEN

Diffusion weighted magnetic resonance imaging (DW-MRI) captures tissue microarchitecture at millimeter scale. With recent advantages in data sharing, large-scale multi-site DW-MRI datasets are being made available for multi-site studies. However, DW-MRI suffers from measurement variability (e.g., inter- and intra-site variability, hardware performance, and sequence design), which consequently yields inferior performance on multi-site and/or longitudinal diffusion studies. In this study, we propose a novel, deep learning-based method to harmonize DW-MRI signals for a more reproducible and robust estimation of microstructure. Our method introduces a data-driven scanner-invariant regularization scheme to model a more robust fiber orientation distribution function (FODF) estimation. We study the Human Connectome Project (HCP) young adults test-retest group as well as the MASiVar dataset (with inter- and intra-site scan/rescan data). The 8th order spherical harmonics coefficients are employed as data representation. The results show that the proposed harmonization approach maintains higher angular correlation coefficients (ACC) with the ground truth signals (0.954 versus 0.942), while achieves higher consistency of FODF signals for intra-scanner data (0.891 versus 0.826), as compared with the baseline supervised deep learning scheme. Furthermore, the proposed data-driven framework is flexible and potentially applicable to a wider range of data harmonization problems in neuroimaging.

14.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066284

RESUMEN

One area of medical imaging that has recently experienced innovative deep learning advances is diffusion MRI (dMRI) streamline tractography with recurrent neural networks (RNNs). Unlike traditional imaging studies which utilize voxel-based learning, these studies model dMRI features at points in continuous space off the voxel grid in order to propagate streamlines, or virtual estimates of axons. However, implementing such models is non-trivial, and an open-source implementation is not yet widely available. Here, we describe a series of considerations for implementing tractography with RNNs and demonstrate they allow one to approximate a deterministic streamline propagator with comparable performance to existing algorithms. We release this trained model and the associated implementations leveraging popular deep learning libraries. We hope the availability of these resources will lower the barrier of entry into this field, spurring further innovation.

15.
Hum Brain Mapp ; 44(9): 3758-3780, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37067096

RESUMEN

Assessing the consistency of quantitative MRI measurements is critical for inclusion in longitudinal studies and clinical trials. Intraclass coefficient correlation and coefficient of variation were used to evaluate the different consistency aspects of diffusion- and myelin-based MRI measures. Multi-shell diffusion and inhomogeneous magnetization transfer data sets were collected from 20 healthy adults at a high-frequency of five MRI sessions. The consistency was evaluated across whole bundles and the track-profile along the bundles. The impact of the fiber populations on the consistency was also evaluated using the number of fiber orientations map. For whole and profile bundles, moderate to high reliability of diffusion and myelin measures were observed. We report higher reliability of measures for multiple fiber populations than single. The overall portrait of the most consistent measurements and bundles drawn from a wide range of MRI techniques presented here will be particularly useful for identifying reliable biomarkers capable of detecting, monitoring and predicting white matter changes in clinical applications and has the potential to inform patient-specific treatment strategies.


Asunto(s)
Sustancia Blanca , Adulto , Humanos , Sustancia Blanca/diagnóstico por imagen , Vaina de Mielina , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Estudios Longitudinales , Encéfalo/diagnóstico por imagen
16.
Brain Struct Funct ; 228(3-4): 1019-1031, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37074446

RESUMEN

Superficial white matter (SWM) represents a significantly understudied part of the human brain, despite comprising a large portion of brain volume and making up a majority of cortico-cortical white matter connections. Using multiple, high-quality datasets with large sample sizes (N = 2421, age range 5-100) in combination with methodological advances in tractography, we quantified features of SWM volume and thickness across the brain and across development, young adulthood, and aging. We had four primary aims: (1) characterize SWM thickness across brain regions (2) describe associations between SWM volume and age (3) describe associations between SWM thickness and age, and (4) quantify relationships between SWM thickness and cortical features. Our main findings are that (1) SWM thickness varies across the brain, with patterns robust across individuals and across the population at the region-level and vertex-level; (2) SWM volume shows unique volumetric trajectories with age that are distinct from gray matter and other white matter trajectories; (3) SWM thickness shows nonlinear cross-sectional changes across the lifespan that vary across regions; and (4) SWM thickness is associated with features of cortical thickness and curvature. For the first time, we show that SWM volume follows a similar trend as overall white matter volume, peaking at a similar time in adolescence, leveling off throughout adulthood, and decreasing with age thereafter. Notably, the relative fraction of total brain volume of SWM continuously increases with age, and consequently takes up a larger proportion of total white matter volume, unlike the other tissue types that decrease with respect to total brain volume. This study represents the first characterization of SWM features across the large portion of the lifespan and provides the background for characterizing normal aging and insight into the mechanisms associated with SWM development and decline.


Asunto(s)
Sustancia Blanca , Adolescente , Humanos , Adulto Joven , Adulto , Preescolar , Niño , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sustancia Blanca/diagnóstico por imagen , Estudios Transversales , Encéfalo/diagnóstico por imagen , Envejecimiento , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
17.
Magn Reson Imaging ; 102: 20-25, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36965836

RESUMEN

In diffusion weighted MRI (DW-MRI), hardware nonlinearities lead to spatial variations in the orientation and magnitude of diffusion weighting. While the correction of these spatial distortions has been well established for analyses of DW-MRI, the existing voxel-wise empirical correction for gradient nonlinearities requires reimplementation of existing models, as the resultant gradients vary by voxel. Herein, we propose a two-step signal approximation after voxel-wise correction of gradient nonlinearity effects in DW-MRI. The proposed technique (1) scales the diffusion signal and (2) resamples the gradient orientations. This results in uniform gradients across the corrected image and provides the key advantage of seamless integration into current diffusion workflows. We investigated the validity of our technique by fitting a multi-compartment neurite orientation dispersion and density imaging (NODDI) model to the empirical correction and proposed approximation in five subjects from the MASiVar pediatric dataset. We evaluated intra-cellular volume fraction (iVF), CSF volume fraction (cVF), and orientation dispersion index (ODI) from NODDI. The Cohen's d of iVF, cVF and ODI between the techniques was <0.2 indicating the proposed technique does not exhibit significant differences from the voxel-wise correction technique. Our two-step signal approximation is an efficient representation of the voxel-wise gradient table correction. Using this approximation, correction of gradient nonlinearities can be easily incorporated into existing diffusion preprocessing pipelines and is implemented in "PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images".


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neuritas , Humanos , Niño , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
18.
Aging Brain ; 32023.
Artículo en Inglés | MEDLINE | ID: mdl-36817413

RESUMEN

It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.

19.
J Magn Reson Imaging ; 58(4): 1211-1220, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36840398

RESUMEN

BACKGROUND: While graph measures are used increasingly to characterize human connectomes, uncertainty remains in how to use these metrics in a quantitative and reproducible manner. Specifically, there is a lack of community consensus regarding the number of streamlines needed to generate connectomes. PURPOSE: The purpose was to define the relationship between streamline count and graph-measure value, reproducibility, and repeatability. STUDY TYPE: Retrospective analysis of previously prospective study. POPULATION: Ten healthy subjects, 70% female, aged 25.3 ± 5.9 years. FIELD STRENGTH/SEQUENCE: A 3-T, T1-weighted sequences and diffusion-weighted imaging (DWI) with two gradient strengths (b-values = 1200 and 3000 sec/mm2 , echo time [TE] = 68 msec, repetition time [TR] = 5.4 seconds, 120 slices, field of view = 188 mm2 ). ASSESSMENT: A total of 13 graph-theory measures were derived for each subject by generating probabilistic whole-brain tractography from DWI and mapping the structural connectivity to connectomes. The streamline count invariance from changes in mean, repeatability, and reproducibility were derived. STATISTICAL TESTS: Paired t-test with P value <0.05 was used to compare graph-measure means with a reference, intraclass correlation coefficient (ICC) to measure repeatability, and concordance correlation coefficient (CCC) to measure reproducibility. RESULTS: Modularity and global efficiency converged to their reference mean with ICC > 0.90 and CCC > 0.99. Edge count, small-worldness, randomness, and average betweenness centrality converged to the reference mean, with ICC > 0.90 and CCC > 0.95. Assortativity and average participation coefficient converged with ICC > 0.75 and CCC > 0.90. Density, average node strength, average node degree, characteristic path length, average local efficiency, and average clustering coefficient did not converge, though had ICC > 0.90 and CCC > 0.99. For these measures, alternate definitions that converge a reference mean are provided. DATA CONCLUSION: Modularity and global efficiency are streamline count invariant for greater than 6 million and 100,000 streamlines, respectively. Density, average node strength, average node degree, characteristic path length, average local efficiency, and average clustering coefficient were strongly dependent on streamline count. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Conectoma , Humanos , Femenino , Masculino , Reproducibilidad de los Resultados , Estudios Prospectivos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
20.
bioRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824784

RESUMEN

Recent studies have revealed the production of time-locked blood oxygenation-level dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to a task, challenging the idea of sparse and localized brain functions, and highlighting the pervasiveness of potential false negative fMRI findings. In these studies, 'whole-brain' refers to gray matter regions only, which is the only tissue traditionally studied with fMRI. However, recent reports have also demonstrated reliable detection and analyses of BOLD signals in white matter which have been largely ignored in previous reports. Here, using model-free analysis and simple tasks, we investigate BOLD signal changes in both white and gray matters. We aimed to evaluate whether white matter also displays time-locked BOLD signals across all structural pathways in response to a stimulus. We find that both white and gray matter show time-locked activations across the whole-brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing very different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that the whole brain, including both white and gray matter, show time-locked activation to multiple stimuli, not only challenging the idea of sparse functional localization, but also the prevailing wisdom of treating white matter BOLD signals as artefacts to be removed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...