Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 107(2-1): 024504, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932513

RESUMEN

The electrical signal associated with a biopolymer translocating through a nanoscale pore depends on the size, topology, and configuration of each molecule. Building upon recent interest in using solid-state nanopores for studying the topology of knotted and supercoiled DNA, we present experimental observations of topologically linked catenanes translocating through a solid-state nanopore. Using restriction enzymes, linked circular molecules were isolated from the mitochondrial DNA of Crithidia fasciculata, a structure known as a kinetoplast that comprises thousands of topologically interlocked minicircles. Digested kinetoplasts produce a spectrum of catenane topologies, which are identified from their nanopore translocation signals by spikes in the blockade current associated with the topological linkages. We attribute the different patterns of the measured electrical signals to 2-catenanes, linear and triangular 3-catenanes, and several types of 4- and 5-catenanes as well as more complex structures. Measurements of the translocation time of signals consistent with 2- and 3-catenanes suggest that topological friction between the linkages and the pore slows the translocation time of these structures, as predicted in recent simulations.


Asunto(s)
Catenanos , Nanoporos , ADN Encadenado , ADN Circular , ADN Superhelicoidal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA