Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773071

RESUMEN

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Epigénesis Genética , Células Madre Hematopoyéticas , Mutación , Proteínas Proto-Oncogénicas , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Hematopoyesis/genética , Ratones , Diferenciación Celular/genética
2.
bioRxiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732224

RESUMEN

Tissue resident myeloid cells (TRM) in adults have highly variable lifespans and may be derived from early embryonic yolk sac, fetal liver or bone marrow. Some of these TRM are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplant can replace long-lived brain TRM resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug-conjugate (ADC) targeted cell killing as a cell selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM in multiple tissues. Replacement of TRM ranged from 40 to 95 percent efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM in tissues returned to pre-treatment levels suggesting a regulated control of TRM abundance. As expected, brain, microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that anti-CD45-ADC clears both HSC and TRM niches enabling cell replacement to achieve disease modification in a resident myeloid cell driven disease.

3.
Blood Adv ; 7(22): 6964-6973, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37748049

RESUMEN

Tissue-resident myeloid (TRM) cells in adults have highly variable lifespans, and may be derived from early embryonic yolk sac, fetal liver, or bone marrow. Some of these TRM cells are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplantation can replace long-lived brain TRM cells, resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug conjugate (ADC)-targeted cell killing as a cell-selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM cells in multiple tissues. Replacement of TRM cells ranged from 40% to 95% efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM cells in tissues returned to pretreatment levels, suggesting a regulated control of TRM cell abundance. As expected, brain microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque-resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that the anti-CD45-ADC clears both hematopoietic stem and TRM cells from their niches, enabling cell replacement to achieve disease modification in a resident myeloid cell-driven disease.


Asunto(s)
Inmunoconjugados , Adulto , Humanos , Inmunoconjugados/farmacología , Macrófagos , Monocitos , Médula Ósea , Microglía
4.
Blood ; 142(7): 658-674, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37267513

RESUMEN

Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.


Asunto(s)
Granulocitos , Monocitos , Células Progenitoras Mieloides , Epigenoma , Epigénesis Genética , Diferenciación Celular/genética
5.
Cell Metab ; 32(3): 391-403.e6, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763164

RESUMEN

Cancer relapse begins when malignant cells pass through the extreme metabolic bottleneck of stress from chemotherapy and the byproducts of the massive cell death in the surrounding region. In acute myeloid leukemia, complete remissions are common, but few are cured. We tracked leukemia cells in vivo, defined the moment of maximal response following chemotherapy, captured persisting cells, and conducted unbiased metabolomics, revealing a metabolite profile distinct from the pre-chemo growth or post-chemo relapse phase. Persisting cells used glutamine in a distinctive manner, preferentially fueling pyrimidine and glutathione generation, but not the mitochondrial tricarboxylic acid cycle. Notably, malignant cell pyrimidine synthesis also required aspartate provided by specific bone marrow stromal cells. Blunting glutamine metabolism or pyrimidine synthesis selected against residual leukemia-initiating cells and improved survival in leukemia mouse models and patient-derived xenografts. We propose that timed cell-intrinsic or niche-focused metabolic disruption can exploit a transient vulnerability and induce metabolic collapse in cancer cells to overcome chemoresistance.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Animales , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
6.
Nat Commun ; 10(1): 4749, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628347

RESUMEN

Trophectoderm (TE) lineage development is pivotal for proper implantation, placentation, and healthy pregnancy. However, only a few TE-specific transcription factors (TFs) have been systematically characterized, hindering our understanding of the process. To elucidate regulatory mechanisms underlying TE development, here we map super-enhancers (SEs) in trophoblast stem cells (TSCs) as a model. We find both prominent TE-specific master TFs (Cdx2, Gata3, and Tead4), and >150 TFs that had not been previously implicated in TE lineage, that are SE-associated. Mapping targets of 27 SE-predicted TFs reveals a highly intertwined transcriptional regulatory circuitry. Intriguingly, SE-predicted TFs show 4 distinct expression patterns with dynamic alterations of their targets during TSC differentiation. Furthermore, depletion of a subset of TFs results in dysregulation of the markers for specialized cell types in placenta, suggesting a role during TE differentiation. Collectively, we characterize an expanded TE-specific regulatory network, providing a framework for understanding TE lineage development and placentation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Trofoblastos/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Ratones , Placentación/genética , Embarazo , Factores de Transcripción/genética , Trofoblastos/citología
7.
Cell Stem Cell ; 25(4): 570-583.e7, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31279774

RESUMEN

Stromal cell populations that maintain hematopoietic stem and progenitor cells (HSPCs) are generally characterized in steady-state conditions. Here, we report a comprehensive atlas of bone marrow stromal cell subpopulations under homeostatic and stress conditions using mass cytometry (CyTOF)-based single-cell protein analysis. We identified 28 subsets of non-hematopoietic cells during homeostasis, 14 of which expressed hematopoietic regulatory factors. Irradiation-based conditioning for HSPC transplantation led to the loss of most of these populations, including the LeptinR+ and Nestin+ subsets. In contrast, a subset expressing Ecto-5'-nucleotidase (CD73) was retained and a specific CD73+NGFRhigh population expresses high levels of cytokines during homeostasis and stress. Genetic ablation of CD73 compromised HSPC transplantation in an acute setting without long-term changes in bone marrow HSPCs. Thus, this protein-based expression mapping reveals distinct sets of stromal cells in the bone marrow and how they change in clinically relevant stress settings to contribute to early stages of hematopoietic regeneration.


Asunto(s)
Células de la Médula Ósea/metabolismo , Estrés Fisiológico/fisiología , Células del Estroma/metabolismo , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Animales , Atlas como Asunto , Células de la Médula Ósea/patología , Células Cultivadas , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Homeostasis , Humanos , Espectrometría de Masas , Ratones , Ratones Noqueados , Nestina/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Leptina/metabolismo , Nicho de Células Madre , Células del Estroma/patología
8.
Cancer Res ; 78(18): 5300-5314, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30065048

RESUMEN

The presence of disseminated tumor cells in breast cancer patient bone marrow aspirates predicts decreased recurrence-free survival. Although it is appreciated that physiologic, pathologic, and therapeutic conditions impact hematopoiesis, it remains unclear whether targeting hematopoiesis presents opportunities for limiting bone metastasis. Using preclinical breast cancer models, we discovered that marrow from mice treated with the bisphosphonate zoledronic acid (ZA) are metastasis-suppressive. Specifically, ZA modulated hematopoietic myeloid/osteoclast progenitor cell (M/OCP) lineage potential to activate metastasis-suppressive activity. Granulocyte-colony stimulating factor (G-CSF) promoted ZA resistance by redirecting M/OCP differentiation. We identified M/OCP and bone marrow transcriptional programs associated with metastasis suppression and ZA resistance. Analysis of patient blood samples taken at randomization revealed that women with high-plasma G-CSF experienced significantly worse outcome with adjuvant ZA than those with lower G-CSF levels. Our findings support discovery of therapeutic strategies to direct M/OCP lineage potential and biomarkers that stratify responses in patients at risk of recurrence.Significance: Bone marrow myeloid/osteoclast progenitor cell lineage potential has a profound impact on breast cancer bone metastasis and can be modulated by G-CSF and bone-targeting agents. Cancer Res; 78(18); 5300-14. ©2018 AACR.


Asunto(s)
Células de la Médula Ósea/citología , Neoplasias de la Mama/patología , Linaje de la Célula , Células Madre Hematopoyéticas/citología , Metástasis de la Neoplasia/prevención & control , Animales , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Médula Ósea/patología , Neoplasias Óseas/prevención & control , Diferenciación Celular , Línea Celular Tumoral , Femenino , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Recurrencia Local de Neoplasia , Osteoclastos/citología , Osteoclastos/metabolismo , Ácido Zoledrónico/farmacología
9.
Nucleic Acids Res ; 46(9): 4382-4391, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29529258

RESUMEN

CpG islands (CGIs) have long been implicated in the regulation of vertebrate gene expression. However, the involvement of CGIs in chromosomal architectures and associated gene expression regulations has not yet been thoroughly explored. By combining large-scale integrative data analyses and experimental validations, we show that CGIs clearly reconcile two competing models explaining nuclear gene localizations. We first identify CGI-containing (CGI+) and CGI-less (CGI-) genes are non-randomly clustered within the genome, which reflects CGI-dependent spatial gene segregation in the nucleus and corresponding gene regulatory modes. Regardless of their transcriptional activities, CGI+ genes are mainly located at the nuclear center and encounter frequent long-range chromosomal interactions. Meanwhile, nuclear peripheral CGI- genes forming heterochromatin are activated and internalized into the nuclear center by local enhancer-promoter interactions. Our findings demonstrate the crucial implications of CGIs on chromosomal architectures and gene positioning, linking the critical importance of CGIs in determining distinct mechanisms of global gene regulation in three-dimensional space in the nucleus.


Asunto(s)
Cromosomas de los Mamíferos/química , Islas de CpG , Regulación de la Expresión Génica , Animales , Línea Celular , Núcleo Celular/genética , Cromatina/química , Ratones , Células 3T3 NIH , Transcripción Genética
10.
Stem Cell Res ; 26: 95-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29272857

RESUMEN

During early development in placental mammals, proper trophoblast lineage development is essential for implantation and placentation. Defects in this lineage can cause early pregnancy failures and other pregnancy disorders. However, transcription factors controlling trophoblast development remain poorly understood. Here, we utilize Fosl1, previously implicated in trophoblast giant cell development as a member of the AP-1 complex, to trans-differentiate embryonic stem (ES) cells to trophoblast lineage-like cells. We first show that the ectopic expression of Fosl1 is sufficient to induce trophoblast-specific gene expression programs in ES cells. Surprisingly, we find that this transcriptional reprogramming occurs independently of changes in levels of ES cell core factors during the cell fate change. This suggests that Fosl1 acts in a novel way to orchestrate the ES to trophoblast cell fate conversion compared to previously known reprogramming factors. Mapping of Fosl1 targets reveals that Fosl1 directly activates TE lineage-specific genes as a pioneer factor. Our work suggests Fosl1 may be used to reprogram ES cells into differentiated cell types in trophoblast lineage, which not only enhances our knowledge of global trophoblast gene regulation but also may provide a future therapeutic tool for generating induced trophoblast cells from patient-derived pluripotent stem cells.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trofoblastos/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Femenino , Ratones , Células Madre Pluripotentes/citología , Embarazo , Proteínas Proto-Oncogénicas c-fos/genética , Trofoblastos/citología
11.
Nucleic Acids Res ; 45(17): 10103-10114, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973471

RESUMEN

Direct reprogramming can be achieved by forced expression of master transcription factors. Yet how such factors mediate repression of initial cell-type-specific genes while activating target cell-type-specific genes is unclear. Through embryonic stem (ES) to trophoblast stem (TS)-like cell reprogramming by introducing individual TS cell-specific 'CAG' factors (Cdx2, Arid3a and Gata3), we interrogate their chromosomal target occupancies, modulation of global transcription and chromatin accessibility at the initial stage of reprogramming. From the studies, we uncover a sequential, two-step mechanism of cellular reprogramming in which repression of pre-existing ES cell-associated gene expression program is followed by activation of TS cell-specific genes by CAG factors. Therefore, we reveal that CAG factors function as both decommission and pioneer factors during ES to TS-like cell fate conversion.


Asunto(s)
Factor de Transcripción CDX2/fisiología , Técnicas de Reprogramación Celular , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Factor de Transcripción GATA3/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/fisiología , Trofoblastos/citología , Animales , Factor de Transcripción CDX2/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Medios de Cultivo Condicionados , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Fibroblastos , Factor de Transcripción GATA3/genética , Ontología de Genes , Código de Histonas , Ratones , Factores de Transcripción/genética , Transcripción Genética
12.
Nucleic Acids Res ; 45(12): 7151-7166, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28453857

RESUMEN

Histone H2B lysine 120 mono-ubiquitination (H2Bub1) catalyzed by Rnf20 has been implicated in normal differentiation of embryonic stem (ES) and adult stem cells. However, it remains unknown how Rnf20 is recruited to its specific target chromosomal loci for the establishment of H2Bub1. Here, we reveal that Fbxl19, a CxxC domain-containing protein, promotes H2Bub1 at the promoters of CpG island-containing genes by interacting with Rnf20. We show that up-regulation of Fbxl19 increases the level of global H2Bub1 in mouse ES cells, while down-regulation of Fbxl19 reduces the level of H2Bub1. Our genome-wide target mapping unveils the preferential occupancy of Fbxl19 on CpG island-containing promoters, and we further discover that chromosomal binding of Fbxl19 is required for H2Bub1 of its targets. Moreover, we reveal that Fbxl19 is critical for proper differentiation of ES cells in collaboration with Rnf20. Altogether, our results demonstrate that Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Islas de CpG , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Células HEK293 , Histonas/genética , Humanos , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
Artículo en Inglés | MEDLINE | ID: mdl-29658952

RESUMEN

Understanding how the first cell fate decision has chosen is a fascinating biological question that was received consider attention over the last decade. Numerous transcription factors are required, and many have been shown to have essential roles in this process. Here we reexamine the function that transcription factors play primarily in the mouse-the model system most thoroughly examined in this process. We address how the first embryonic lineage is established and maintained, with a particular emphasis on subsequent trophectoderm development and the role of the recently established Arid3a transcription factor in this process. In addition, we review relevant aspects of embryonic stem cell reprogramming into trophoblast stem cells -the equivalent of the epiblast (inner cell mass) and the establishment of induced trophoblast stem cells-the in vitro equivalent of the trophectoderm.

14.
Dev Biol ; 422(2): 83-91, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27965054

RESUMEN

Previous studies in the mouse indicated that ARID3A plays a critical role in the first cell fate decision required for generation of trophectoderm (TE). Here, we demonstrate that ARID3A is widely expressed during mouse and human placentation and essential for early embryonic viability. ARID3A localizes to trophoblast giant cells and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Conventional Arid3a knockout embryos suffer restricted intrauterine growth with severe defects in placental structural organization. Arid3a null placentas show aberrant expression of subtype-specific markers as well as significant alteration in cytokines, chemokines and inflammatory response-related genes, including previously established markers of human placentation disorders. BMP4-mediated induction of trophoblast stem (TS)-like cells from human induced pluripotent stem cells results in ARID3A up-regulation and cytoplasmic to nuclear translocation. Overexpression of ARID3A in BMP4-mediated TS-like cells up-regulates TE markers, whereas pluripotency markers are down-regulated. Our results reveal an essential, conserved function for ARID3A in mammalian placental development through regulation of both intrinsic and extrinsic developmental programs.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Placenta/metabolismo , Placentación/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Gigantes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/fisiología , Embarazo , Trofoblastos/citología
15.
Blood ; 128(2): 204-16, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27095787

RESUMEN

In the developing mouse embryo, the first hematopoietic stem cells (HSCs) arise in the aorta-gonad-mesonephros (AGM) and mature as they transit through the fetal liver (FL). Compared with FL and adult HSCs, AGM HSCs have reduced repopulation potential in irradiated adult transplant recipients but mechanisms underlying this deficiency in AGM HSCs are poorly understood. By co-expression gene network analysis, we deduced that AGM HSCs show lower levels of interferon-α (IFN-α)/Jak-Stat1-associated gene expression than FL HSCs. Treatment of AGM HSCs with IFN-α enhanced long-term hematopoietic engraftment and donor chimerism. Conversely, IFN-α receptor-deficient AGMs (Ifnαr1(-/-)), had significantly reduced donor chimerism. We identify adenine-thymine-rich interactive domain-3a (Arid3a), a factor essential for FL and B lymphopoiesis, as a key transcriptional co-regulator of IFN-α/Stat1 signaling. Arid3a occupies the genomic loci of Stat1 as well as several IFN-α effector genes, acting to regulate their expression. Accordingly, Arid3a(-/-) AGM HSCs had significantly reduced transplant potential, which was rescued by IFN-α treatment. Our results implicate the inflammatory IFN-α/Jak-Stat pathway in the developmental maturation of embryonic HSCs, whose manipulation may lead to increased potency of reprogrammed HSCs for transplantation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Interferón-alfa/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Interferón-alfa/genética , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factores de Transcripción/genética
17.
Cell Rep ; 13(1): 52-60, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26411691

RESUMEN

Core pluripotency factors, such as Oct4, Sox2, and Nanog, play important roles in maintaining embryonic stem cell (ESC) identity by autoregulatory feedforward loops. Nevertheless, the mechanism that provides precise control of the levels of the ESC core factors without indefinite amplification has remained elusive. Here, we report the direct repression of core pluripotency factors by Tgif1, a previously known terminal repressor of TGFß/activin/nodal signaling. Overexpression of Tgif1 reduces the levels of ESC core factors, whereas its depletion leads to the induction of the pluripotency factors. We confirm the existence of physical associations between Tgif1 and Oct4, Nanog, and HDAC1/2 and further show the level of Tgif1 is not significantly altered by treatment with an activator/inhibitor of the TGFß/activin/nodal signaling. Collectively, our findings establish Tgif1 as an integral member of the core regulatory circuitry of mouse ESCs that counterbalances the levels of the core pluripotency factors in a TGFß/activin/nodal-independent manner.


Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Represoras/genética , Factores de Transcripción SOXB1/genética , Activinas/genética , Activinas/metabolismo , Animales , Diferenciación Celular , Ectodermo/citología , Ectodermo/metabolismo , Embrión de Mamíferos , Endodermo/citología , Endodermo/metabolismo , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Nat Commun ; 5: 5490, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25405324

RESUMEN

Both transcriptional and epigenetic regulations are fundamental for the control of eukaryotic gene expression. Here we perform a compendium analysis of >200 large sequencing data sets to elucidate the regulatory logic of global gene expression programs in mouse embryonic stem (ES) cells. We define four major classes of DNA-binding proteins (Core, PRC, MYC and CTCF) based on their target co-occupancy, and discover reciprocal regulation between the MYC and PRC classes for the activity of nearly all genes under the control of the CpG island (CGI)-containing promoters. This CGI-dependent regulatory mode explains the functional segregation between CGI-containing and CGI-less genes during early development. By defining active enhancers based on the co-occupancy of the Core class, we further demonstrate their additive roles in CGI-containing gene expression and cell type-specific roles in CGI-less gene expression. Altogether, our analyses provide novel insights into previously unknown CGI-dependent global gene regulatory modes.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/genética , Animales , Secuencia de Bases , Línea Celular , Proteínas de Unión al ADN/clasificación , Elementos de Facilitación Genéticos/genética , Genes Reguladores , Ratones , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Análisis de Secuencia de ADN
19.
Genes Dev ; 28(20): 2219-32, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319825

RESUMEN

Despite their origin from the inner cell mass, embryonic stem (ES) cells undergo differentiation to the trophectoderm (TE) lineage by repression of the ES cell master regulator Oct4 or activation of the TE master regulator Caudal-type homeobox 2 (Cdx2). In contrast to the in-depth studies of ES cell self-renewal and pluripotency, few TE-specific regulators have been identified, thereby limiting our understanding of mechanisms underlying the first cell fate decision. Here we show that up-regulation and nuclear entry of AT-rich interactive domain 3a (Arid3a) drives TE-like transcriptional programs in ES cells, maintains trophoblast stem (TS) cell self-renewal, and promotes further trophoblastic differentiation both upstream and independent of Cdx2. Accordingly, Arid3a(-/-) mouse post-implantation placental development is severely impaired, resulting in early embryonic death. We provide evidence that Arid3a directly activates TE-specific and trophoblast lineage-specific genes while directly repressing pluripotency genes via differential regulation of epigenetic acetylation or deacetylation. Our results identify Arid3a as a critical regulator of TE and placental development through execution of the commitment and differentiation phases of the first cell fate decision.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Placentación , Embarazo , Factores de Transcripción/genética
20.
Stem Cell Reports ; 2(1): 26-35, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24511468

RESUMEN

We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Reprogramación Celular , Senescencia Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Antígeno Lewis X/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...