Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 71: 103097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442648

RESUMEN

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.


Asunto(s)
Peróxido de Hidrógeno , Proteínas del Tejido Nervioso , Fosfatidilinositoles , Peróxido de Hidrógeno/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Membrana Celular/metabolismo , Transducción de Señal , Endocitosis
2.
Redox Biol ; 51: 102275, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248828

RESUMEN

Mitochondrial quality control (MQC) consists of multiple processes: the prevention of mitochondrial oxidative damage, the elimination of damaged mitochondria via mitophagy and mitochondrial fusion and fission. Several studies proved that MQC impairment causes a plethora of pathological conditions including cardiovascular diseases. However, the precise molecular mechanism by which MQC reverses mitochondrial dysfunction, especially in the heart, is unclear. The mitochondria-specific peroxidase Peroxiredoxin 3 (Prdx3) plays a protective role against mitochondrial dysfunction by removing mitochondrial reactive oxygen species. Therefore, we investigated whether Prdx3-deficiency directly leads to heart failure via mitochondrial dysfunction. Fifty-two-week-old Prdx3-deficient mice exhibited cardiac hypertrophy and dysfunction with giant and damaged mitochondria. Mitophagy was markedly suppressed in the hearts of Prdx3-deficient mice compared to the findings in wild-type and Pink1-deficient mice despite the increased mitochondrial damage induced by Prdx3 deficiency. Under conditions inducing mitophagy, we identified that the damaged mitochondrial accumulation of PINK1 was completely inhibited by the ablation of Prdx3. We propose that Prdx3 interacts with the N-terminus of PINK1, thereby protecting PINK1 from proteolytic cleavage in damaged mitochondria undergoing mitophagy. Our results provide evidence of a direct association between MQC dysfunction and cardiac function. The dual function of Prdx3 in mitophagy regulation and mitochondrial oxidative stress elimination further clarifies the mechanism of MQC in vivo and thereby provides new insights into developing a therapeutic strategy for mitochondria-related cardiovascular diseases such as heart failure.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Animales , Cardiomegalia/genética , Ratones , Mitocondrias/genética , Peroxiredoxina III/genética , Proteínas Quinasas
3.
Antioxidants (Basel) ; 12(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36670871

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. In addition, NAFLD may increase the risk of cardiovascular and liver-related diseases, and displays features of metabolic syndrome. In NAFLD, oxidative stress is primarily caused by excessive free fatty acids. The oxidation of fatty acids is usually caused by ß-oxidation of mitochondria under normal conditions, resulting in the production of energy. However, when the inflow of fatty acids in NAFLD becomes excessive, the ß-oxidation of mitochondria becomes saturated and the oxidation process increases at sites including peroxisomes and microsomes, thereby increasing production of reactive oxygen species (ROS). Thus, hepatic mitochondrial ROS play an important role in the pathogenesis of NAFLD. Eliminating mitochondrial ROS may improve NAFLD, but the underlying mechanism remains unclear. We examined the effect of mitochondrial ROS on NAFLD by focusing on peroxiredoxin (Prx), an antioxidant protein that can remove hydrogen peroxide. The protective effect and pathological phenomenon of mitochondrial peroxiredoxin in methionine-choline deficient diet (MCD)-induced liver injury was assessed in a mouse model of NAFLD. In these mice, mitochondrial peroxiredoxin deficiency significantly increased hepatic steatosis and fibrosis. In addition, ablation of Prx III enhances susceptibility to MCD diet-induced oxidative stress and exacerbates NAFLD progression by promoting inflammation. The binding assay results also showed that Prx III-deficient mice had more severe liver damage than Prx III-abundant mice in MCD diet liver injury models. The present data suggest that mitochondrial peroxiredoxin III could be a therapeutic target for preventing and suppressing diet-induced NAFLD.

4.
Antioxidants (Basel) ; 10(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669127

RESUMEN

Prx V mRNA contains two in-frame AUG codons, producing a long (L-Prx V) and short form of Prx V (S-Prx V), and mouse L-Prx V is expressed as a precursor protein containing a 49-amino acid N-terminal mitochondria targeting sequence. Here, we show that the N-terminal 41-residue sequence of L-Prx V is cleaved by mitochondrial processing peptidase (MPP) in the mitochondrial matrix to produce an intermediate Prx V (I-Prx V) with a destabilizing phenylalanine at its N-terminus, and further, that the next 8-residue sequence is cleaved by mitochondrial intermediate peptidase (MIP) to convert I-Prx V to a stabilized mature form that is identical to S-Prx V. Further, we show that when mitochondrial H2O2 levels are increased in HeLa cells using rotenone, in several mouse tissues by deleting Prx III, and in the adrenal gland by deleting Srx or by exposing mice to immobilized stress, I-Prx V accumulates transiently and mature S-Prx V levels decrease in mitochondria over time. These findings support the view that MIP is inhibited by H2O2, resulting in the accumulation and subsequent degradation of I-Prx V, identifying a role for redox mediated regulation of Prx V proteolytic maturation and expression in mitochondria.

5.
Mol Cells ; 43(9): 813-820, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32975211

RESUMEN

NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOXTM Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.


Asunto(s)
Antineoplásicos/farmacología , Trióxido de Arsénico/farmacología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Mitocondrias/metabolismo , Peroxiredoxina III/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Especies Reactivas de Oxígeno/metabolismo , Transfección
6.
Antioxidants (Basel) ; 9(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824836

RESUMEN

Ischemia/reperfusion (I/R) is one of the major causes of acute kidney injury (AKI) and associated with increased mortality and progression to chronic kidney injury (CKI). Molecular mechanisms underlying I/R injury involve the production and excessive accumulation of reactive oxygen species (ROS). Peroxiredoxin (Prx) V, a cysteine-dependent peroxidase, is located in the cytosol, mitochondria, and peroxisome and has an intensive ROS scavenging activity. Therefore, we focused on the role of Prx V during I/R-induced AKI using Prx V knockout (KO) mice. Ablation of Prx V augmented tubular damage, apoptosis, and declined renal function. Prx V deletion also showed higher susceptibility to I/R injury with increased markers for oxidative stress, ER stress, and inflammation in the kidney. Overall, these results demonstrate that Prx V protects the kidneys against I/R-induced injury.

7.
Free Radic Biol Med ; 152: 107-115, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32151745

RESUMEN

Peroxiredoxins (Prxs) are an unusual family of thiol-specific peroxidases that possess a binding site for H2O2 and rely on a conserved cysteine residue for rapid reaction with H2O2. Among 6 mammalian isoforms (Prx I to VI), Prx I and Prx II are mainly found in the cytosol and nucleus. Prx I and Prx II function as antioxidant enzymes and protein chaperone under oxidative distress conditions. Under oxidative eustress conditions, Prx I and Prx II regulate the levels of H2O2 at specific area of the cells as well as sense and transduce H2O2 signaling to target proteins. Prx I and Prx II are known to be covalently modified on multiple sites: Prx I is hyperoxidized on Cys52; phosphorylated on Ser32, Thr90, and Tyr194; acetylated on Lys7, Lys16, Lys27, Lys35, and Lys197; glutathionylated on Cys52, Cys83, and Cys173; and nitrosylated on Cys52 and Cys83, whereas Prx II is hyperoxidized on Cys51; phosphorylated on Thr89, Ser112, and Thr182; acetylated on Ala2 and Lys196; glutathionylated on Cys51 and Cys172; and nitrosylated on Cys51 and Cys172. In this review, we describe how these post-translational modifications affect various functions of Prx I and Prx II.


Asunto(s)
Cisteína , Peroxirredoxinas , Animales , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Procesamiento Proteico-Postraduccional
8.
Redox Biol ; 24: 101203, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026770

RESUMEN

The nuclear protein HMGB1 (high mobility group box 1) is secreted by monocytes-macrophages in response to inflammatory stimuli and serves as a danger-associated molecular pattern. Acetylation and phosphorylation of HMGB1 are implicated in the regulation of its nucleocytoplasmic translocation for secretion, although inflammatory stimuli are known to induce H2O2 production. Here we show that H2O2-induced oxidation of HMGB1, which results in the formation of an intramolecular disulfide bond between Cys23 and Cys45, is necessary and sufficient for its nucleocytoplasmic translocation and secretion. The oxidation is catalyzed by peroxiredoxin I (PrxI) and PrxII, which are first oxidized by H2O2 and then transfer their disulfide oxidation state to HMGB1. The disulfide form of HMGB1 showed higher affinity for nuclear exportin CRM1 compared with the reduced form. Lipopolysaccharide (LPS)-induced HMGB1 secretion was greatly attenuated in macrophages derived from PrxI or PrxII knockout mice, as was the LPS-induced increase in serum HMGB1 levels.


Asunto(s)
Disulfuros/química , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Animales , Biomarcadores , Línea Celular , Cromatografía Liquida , Humanos , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/inmunología , Ratones , Modelos Moleculares , Oxidación-Reducción , Espectrometría de Masas en Tándem
9.
J Biol Chem ; 294(13): 5169-5180, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926755

RESUMEN

I learned biochemistry from P. Boon Chock and Earl Stadtman while working on the regulation of Escherichia coli glutamine synthetase as a postdoctoral fellow at the National Institutes of Health. After becoming a tenured scientist at the same institute, my group discovered, purified, and cloned the first three prototypical members of the phospholipase C family and uncovered the mechanisms by which various cell-surface receptors activate these enzymes to generate diacylglycerol and inositol 1,4,5-trisphosphate. We also discovered the family of peroxiredoxin (Prx) enzymes that catalyze the reduction of H2O2, and we established that mammalian cells express six Prx isoforms that not only protect against oxidative damage but also mediate cell signaling by modulating intracellular H2O2 levels. To validate the signaling role of H2O2, we showed that epidermal growth factor induces a transient increase in intracellular H2O2 levels, and the essential cysteine residue of protein-tyrosine phosphatases is a target for specific and reversible oxidation by the H2O2 produced in such cells. These observations led to a new paradigm in receptor signaling, in which protein tyrosine phosphorylation is achieved not via activation of receptor tyrosine kinases alone but also through concurrent inhibition of protein-tyrosine phosphatases by H2O2 Our studies revealed that Prx isozymes are extensively regulated via phosphorylation as well as by hyperoxidation of the active-site cysteine to cysteine sulfinic acid, with the reverse reaction being catalyzed by sulfiredoxin. This reversible hyperoxidation of Prx was further shown to constitute a universal marker for circadian rhythms in all domains of life.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Animales , Relojes Circadianos , Factor de Crecimiento Epidérmico/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Humanos
10.
Free Radic Biol Med ; 130: 426-435, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448513

RESUMEN

Phosphatidylinositol 4-phosphate [PtdIns(4)P] plays a key role in the biogenesis of transport vesicles at the Golgi complex by recruiting coat proteins and their accessory factors. The PtdIns(4)P content of the Golgi is determined by the concerted action of PtdIns 4-kinase (PI4K) and PtdIns(4)P phosphatase enzymes. Sac1 (suppressor of actin 1) is the major PtdIns(4)P phosphatase and is localized to the Golgi and endoplasmic reticulum. The targeting of both PI4Ks and Sac1 to the Golgi membrane is extensively regulated, as is the catalytic activity of PI4Ks at the Golgi. However, regulation of the catalytic activity of Sac1 has been largely unexplored. Here we show that Sac1undergoes reversible inactivation in mammalian cells when its catalytic Cys389 residue is oxidized by exogenous H2O2 to form an intramolecular disulfide with Cys392. The oxidative inactivation of Sac1 results in the accumulation of PtdIns(4)P at the Golgi, with this effect also being supported by the H2O2-induced activation of p38 mitogen-activated protein kinase (MAPK), which was previously shown to promote the translocation of Sac1 from the Golgi to the endoplasmic reticulum. The increase in Golgi PtdIns(4)P due to Sac1 inactivation, however, is faster than that due to Sac1 translocation. Exposure of cells to H2O2 also increased membrane protein trafficking from the Golgi to the plasma membrane as well as protein secretion.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Antioxid Redox Signal ; 30(14): 1731-1745, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30191719

RESUMEN

AIMS: Peroxiredoxin5 (Prdx5), a thioredoxin peroxidase, is an antioxidant enzyme that is widely studied for its antioxidant properties and protective roles in neurological and cardiovascular disorders. This study is aimed at investigating the functional significance of Prdx5 in mitochondria and at analyzing its roles in ciliogenesis during the process of vertebrate development. RESULTS: We found that several Prdx genes were strongly expressed in multiciliated cells in developing Xenopus embryos, and their peroxidatic functions were crucial for normal cilia development. Depletion of Prdx5 increased levels of cellular reactive oxygen species (ROS), consequently leading to mitochondrial dysfunction and abnormal cilia formation. Proteomic and transcriptomic approaches revealed that excessive ROS accumulation on Prdx5 depletion subsequently reduced the expression level of pyruvate kinase (PK), a key metabolic enzyme in energy production. We further confirmed that the promotor activity of PK was significantly reduced on Prdx5 depletion and that the reduction in PK expression and its promoter activity led to ciliary defects observed in Prdx5-depleted cells. INNOVATION: Our data revealed the novel relationship between ROS and Prdx5 and the consequent effects of this interaction on vertebrate ciliogenesis. The normal process of ciliogenesis is interrupted by the Prdx5 depletion, resulting in excessive ROS levels and suggesting cilia as vulnerable targets of ROS. CONCLUSION: Prdx5 plays protective roles in mitochondria and is critical for normal cilia development by regulating the levels of ROS. The loss of Prdx5 is associated with excessive production of ROS, resulting in mitochondrial dysfunction and aberrant ciliogenesis.


Asunto(s)
Cilios/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Cilios/metabolismo , Cilios/ultraestructura , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Mitocondrias/ultraestructura , Especificidad de Órganos , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Vertebrados
12.
Free Radic Biol Med ; 131: 40-49, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476538

RESUMEN

Binding of epidermal growth factor (EGF) to its cell surface receptor induces production of H2O2, which serves as an intracellular messenger. We have shown that exogenous H2O2 reversibly inactivates the phosphatidylinositol 4-phosphate [PtdIns(4)P] phosphatase Sac1 (suppressor of actin 1) at the Golgi complex of mammalian cells by oxidizing its catalytic cysteine residue and thereby increases both the amount of Golgi PtdIns(4)P and the rate of protein secretion. Here we investigated the effects of EGF on Sac1 oxidation and PtdIns(4)P abundance at the Golgi in A431 cells. EGF induced a transient increase in Golgi PtdIns(4)P as well as a transient oxidation of Sac1 in a manner dependent on elevation of the intracellular Ca2+ concentration and on H2O2. Oxidation of Sac1 occurred at the Golgi, as revealed with the use of the Golgi-confined Sac1-K2A mutant. Knockdown of Duox enzymes implicated these Ca2+-dependent members of the NADPH oxidase family as the major source of H2O2 for Sac1 oxidation. Expression of a Golgi-targeted H2O2 probe revealed transient EGF-induced H2O2 production at this organelle. Our findings have thus uncovered a previously unrecognized EGF signaling pathway that links intracellular Ca2+ mobilization to events at the Golgi including Duox activation, H2O2 production, Sac1 oxidation, and PtdIns(4)P accumulation.


Asunto(s)
Calcio/metabolismo , Aparato de Golgi/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Fosfatos de Fosfatidilinositol/metabolismo , Línea Celular Tumoral , Oxidasas Duales/antagonistas & inhibidores , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores ErbB/farmacología , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
13.
Artículo en Inglés | MEDLINE | ID: mdl-28778867

RESUMEN

Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomotor activity, and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.


Asunto(s)
Ritmo Circadiano , Modelos Biológicos , Oxidación-Reducción , Regulación de la Expresión Génica , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/fisiología , Transducción de Señal
14.
Antioxid Redox Signal ; 28(7): 537-557, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587524

RESUMEN

SIGNIFICANCE: Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.


Asunto(s)
Catálisis , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Animales , Catalasa/química , Catalasa/metabolismo , Cisteína/química , Disulfuros/química , Disulfuros/metabolismo , Glutatión Peroxidasa/química , Glutatión Peroxidasa/genética , Humanos , Peróxido de Hidrógeno/química , Cinética , Oxidación-Reducción , Peroxirredoxinas/química , Fosforilación
15.
Annu Rev Biochem ; 86: 749-775, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28226215

RESUMEN

Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (H2O2) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by H2O2, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of H2O2 signaling. Moreover, their high affinity for and sensitivity to oxidation by H2O2 confer on Prxs the ability to serve as sensors and transducers of H2O2 signaling through transfer of their oxidation state to bound effector proteins.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Peroxirredoxinas/metabolismo , Animales , Dominio Catalítico , Centrosoma/metabolismo , Centrosoma/ultraestructura , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/ultraestructura , Mitosis , Oxidación-Reducción , Peroxirredoxinas/genética , Fosforilación , Transducción de Señal
16.
Free Radic Res ; 50(12): 1408-1421, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27780373

RESUMEN

Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Muerte Celular/fisiología , Estrés del Retículo Endoplásmico/fisiología , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Tunicamicina/farmacología
17.
Free Radic Biol Med ; 99: 120-127, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497909

RESUMEN

Mitochondria produce hydrogen peroxide (H2O2) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H2O2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H2O2-eliminating enzymes, however, it had not been clear how mitochondrial H2O2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H2O2-eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H2O2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO2H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO2H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H2O2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO2H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO2H suggests that mitochondrial release of H2O2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways.

18.
Autophagy ; 12(8): 1272-91, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27337507

RESUMEN

Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces "mitochondrial priming" by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.


Asunto(s)
Autofagia , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Nucleares/metabolismo , Choque Séptico/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Caspasa 1/metabolismo , Activación Enzimática , Humanos , Inflamasomas/metabolismo , Inflamación , Interleucina-18/sangre , Interleucina-1beta/sangre , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucocitos Mononucleares/citología , Lisina/química , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitofagia , Monocitos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasas , Especies Reactivas de Oxígeno/metabolismo
19.
Mol Cells ; 39(1): 1-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26831451

RESUMEN

Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys (CP) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the CP-SH to cysteine sulfenic acid (CP-SOH), which then reacts with another cysteine residue, named the "resolving" Cys (CR) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.


Asunto(s)
Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Animales , Dominio Catalítico , Secuencia Conservada , Cisteína/metabolismo , Humanos , Oxidación-Reducción , Peróxidos/metabolismo
20.
Free Radic Biol Med ; 91: 264-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721593

RESUMEN

Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death.


Asunto(s)
Antineoplásicos/farmacología , Benzoatos/farmacología , Mitocondrias/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...