Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6753-6760, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708988

RESUMEN

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

2.
Nano Lett ; 21(10): 4202-4208, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33710897

RESUMEN

One of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries. When an inner bending is applied on the substrate, the nanotrench closes and the accompanying topological change results in abrupt switching of metamaterial functionalities such as resonance, chirality, and polarization selectivity. Closable nanotrenches can be embedded in metamaterials of broadband spectrum, ranging from visible to microwave. The 99.9% extinction performance is robust, enduring more than a thousand bending cycles. Our work provides a wafer-scale platform for active quantum plasmonics and photonic application of subnanometer phenomena.

3.
Sci Rep ; 7: 45638, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368048

RESUMEN

Transmission of Terahertz (THz) electromagnetic wave through a substrate is encumbered because of scattering, multiple reflections, absorption, and Fabry-Perot effects when the wave interacts with the substrate. We present the experimental realization of nonresonant electromagnetic field enhancement by a factor of almost 104 in substrate-free 5-nm gold nanoslits. Our nanoslits yielded greater than 90% normalized electric field transmission in the low-frequency THz region; the slit width was 5 nm, and the gap coverage ratio was 10-4 of the entire membrane, 0.42 mm2. This large field enhancement was attributed to gap plasmons generated by the THz wave, which squeezes the charge cross-section, thus enabling very highly dense oscillating charges and strong THz field transmission from the nanoslits.

4.
Sci Rep ; 6: 29103, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357346

RESUMEN

Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example.

5.
Sci Rep ; 6: 23823, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025277

RESUMEN

Advances in photolithographic processes have allowed semiconductor industries to manufacture smaller and denser chips. As the feature size of integrated circuits becomes smaller, there has been a growing need for a photomask embedded with ever narrower patterns. However, it is challenging for electron beam lithography to obtain <10 nm linewidths with wafer scale uniformity and a necessary speed. Here, we introduce a photolithography-based, cost-effective mask fabrication method based on atomic layer deposition and overhang structures for sacrificial layers. Using this method, we obtained sub-10 nm square ring arrays of side length 50 µm, and periodicity 100 µm on chromium film, on 1 cm by 1 cm quartz substrate. These patterns were then used as a contact-lithography photomask using 365 nm I-line, to generate metal ring arrays on silicon substrate.

6.
Phys Rev Lett ; 115(12): 125501, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26431000

RESUMEN

Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

7.
Nano Lett ; 15(10): 6683-8, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26372787

RESUMEN

Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.

8.
Nano Lett ; 15(10): 6318-23, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352780

RESUMEN

We report that vanadium dioxide films patterned with λ/100000 nanogaps exhibit an anomalous transition behavior at millimeter wavelengths. Most of the hybrid structure's switching actions occur well below the insulator to metal transition temperature, starting from 25 °C, so that the hysteresis curves completely separate themselves from their bare film counterparts. It is found that thermally excited intrinsic carriers are responsible for this behavior by introducing enough loss in the context of the radically modified electromagnetic environment in the vicinity of the nanogaps. This phenomenon newly extends the versatility of insulator to metal transition devices to encompass their semiconductor properties.

9.
Opt Express ; 23(11): 14937-45, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072850

RESUMEN

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...