Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 18(6): 101168, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38762992

RESUMEN

Heat stress (HS) negatively impacts a variety of production parameters in growing pigs; however, the impact of biological sex on the HS response is largely unknown. To address this, 48 crossbred barrows and gilts (36.8 ± 3.7 kg BW) were individually housed and assigned to one of three constant environmental conditions: (1) thermoneutral (TN) (20.8 ± 1.6 °C; 62.0 ± 4.7% relative humidity; n = 8/sex), (2) HS (39.4 ± 0.6 °C; 33.7 ± 6.3% relative humidity) for 1 d (HS1; n = 8/sex), or (3) or for 7 d (HS7; n = 8/sex). As expected, HS increased rectal temperature (Tr) following 1 d of HS (1.0 °C; P < 0.0001) and 7 d of HS (0.9 °C; P < 0.0001). By 7 d, heat-stressed gilts were cooler than barrows (0.4 °C; P = 0.016), despite identical heating conditions. There was a main effect of sex such that barrows had higher Tr than gilts (P = 0.031). Heat-stressed pigs on d 1 had marked reductions in feed intake and BW compared to TN (P < 0.0001). One day of HS resulted in negative gain to feed (G:F) in barrows and gilts and was reduced compared to TN (P < 0.0001). Notably, following 1 d of HS, the variability of G:F was greater in gilts than in barrows. Between 1 and 7 d of HS, G:F improved in barrows and gilts and were similar to TN pigs, even though HS barrows had higher Tr than gilts over this period. Heat stress for 1 and 7 d reduced empty gastrointestinal tract weight compared to TN (P < 0.0001). Interestingly, HS7 gilts had decreased gastrointestinal tract weight compared to HS1 gilts (2.43 vs 2.72 kg; P = 0.03), whereas it was similar between HS1 and HS7 barrows. Lastly, a greater proportion of gastrointestinal contents was in the stomach of HS1 pigs compared to TN and HS7 (P < 0.05), which is suggestive of decreased gastric emptying. Overall, HS barrows maintained an elevated Tr compared to HS gilts through the duration of the experiment but also maintained similar growth and production metrics compared to gilts, despite this higher temperature.

2.
J Dairy Sci ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460880

RESUMEN

Study objectives were to compare the immune response, metabolism and production following intramammary lipopolysaccharide (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 d in milk [DIM]) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h post-LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h post-LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h post-LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased post-LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased post-LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and dry matter intake (DMI; 14%) on d 1 that did not differ by lactation stage (LS). Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. ß-hydroxybutyrate (BHB) slightly increased (14%) over time post-LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen (BUN) increased after LPS and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36 and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h post-LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.

3.
J Dairy Sci ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428497

RESUMEN

Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 d in milk were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. P1 consisted of a 4 d thermoneutral period with ad libitum intake. During P2, the HS cows were housed in cyclical HS conditions with a temperature humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. DMI of the PFTN cow was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability (GIP). All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. HS decreased voluntary intake by 35% and increased rectal temperature and respiration rate (38.4 vs 39.4°C and 40 vs 71 respirations/min, respectively). HS reduced dry matter intake (DMI) by 35% which accounted for 66% of the decrease in milk yield. The yield, and not concentration, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen (MUN) was higher and plasma urea nitrogen (PUN) tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide binding protein (LBP) was observed. HS cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated PUN indicate a whole-body shift in nitrogen metabolism. No differences in GIP or LBP were observed. These results indicate that, under conditions of this experiment, activation of the immune system by gut derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS.

4.
J Dairy Sci ; 106(8): 5825-5834, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37349209

RESUMEN

Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (~139 d in milk; parity ~2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.


Asunto(s)
Lactancia , Complejo de la Endopetidasa Proteasomal , Embarazo , Femenino , Bovinos , Animales , Lactancia/fisiología , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Calpaína/metabolismo , Calpaína/farmacología , Leche/metabolismo , Respuesta al Choque Térmico , Músculo Esquelético/metabolismo , Urea/metabolismo , Dieta/veterinaria
5.
J Dairy Sci ; 106(7): 4725-4737, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225587

RESUMEN

Heat stress (HS) negatively affects dry matter intake (DMI), milk yield (MY), feed efficiency (FE), and free water intake (FWI) in dairy cows, with detrimental consequences to animal welfare, health, and profitability of dairy farms. Absolute enteric methane (CH4) emission, yield (CH4/DMI), and intensity (CH4/MY) may also be affected. Therefore, the goal of this study was to model the changes in dairy cow productivity, water intake, and absolute CH4 emissions, yield, and intensity with the progression (days of exposure) of a cyclical HS period in lactating dairy cows. Heat stress was induced by increasing the average temperature by 15°C (from 19°C in the thermoneutral period to 34°C) while keeping relative humidity constant at 20% (temperature-humidity index peaks of approximately 83) in climate-controlled chambers for up to 20 d. A database composed of individual records (n = 1,675) of DMI and MY from 82 heat-stressed lactating dairy cows housed in environmental chambers from 6 studies was used. Free water intake was also estimated based on DMI, dry matter, crude protein, sodium, and potassium content of the diets, and ambient temperature. Absolute CH4 emissions was estimated based on DMI, fatty acids, and dietary digestible neutral detergent fiber content of the diets. Generalized additive mixed-effects models were used to describe the relationships of DMI, MY, FE, and absolute CH4 emissions, yield, and intensity with HS. Dry matter intake and absolute CH4 emissions and yield reduced with the progression of HS up to 9 d, when it started to increase again up to 20 d. Milk yield and FE reduced with the progression of HS up to 20 d. Free water intake (kg/d) decreased during the exposure to HS mainly because of a reduction in DMI; however, when expressed in kg/kg of DMI it increased modestly. Methane intensity also reduced initially up to d 5 during HS exposure but then started to increase again following the DMI and MY pattern up to d 20. However, the reductions in CH4 emissions (absolute, yield, and intensity) occurred at the expense of decreases in DMI, MY, and FE, which are not desirable. This study provides quantitative predictions of the changes in animal performance (DMI, MY, FE, FWI) and CH4 emissions (absolute, yield, and intensity) with the progression of HS in lactating dairy cows. The models developed in this study could be used as a tool to help dairy nutritionists to decide when and how to adopt strategies to mitigate the negative effects of HS on animal health and performance and related environmental costs. Thus, more precise and accurate on-farm management decisions could be taken with the use of these models. However, application of the developed models outside of the ranges of temperature-humidity index and period of HS exposure included in this study is not recommended. Also, validation of predictive capacity of the models to predict CH4 emissions and FWI using data from in vivo studies where these variables are measured in heat-stressed lactating dairy cows is required before these models can be used.


Asunto(s)
Lactancia , Metano , Femenino , Bovinos , Animales , Metano/metabolismo , Leche/química , Dieta/veterinaria , Fibras de la Dieta/metabolismo
6.
J Dairy Sci ; 105(10): 8439-8453, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055831

RESUMEN

Hyperinsulinemia concurrent with hypoglycemia is one of a myriad of physiological changes typically experienced by lactating dairy cows exposed to heat stress, the consequences of which are not yet well defined or understood. Therefore, the objective of this experiment was to separate the production-related effects of hyperinsulinemia with hypoglycemia from those of a hyperthermic environment. Multiparous lactating Holstein cows (n = 23; 58 ± 4 d in milk, 3.1 ± 0.3 lactations) were housed in temperature-controlled rooms and all were subjected to 4 experimental periods as follows: (1) thermoneutral (TN; temperature-humidity index of 65.1 ± 0.2; d 1-5), (2) TN + hyperinsulinemic-hypoglycemic clamp (HHC; insulin infused at 0.3 µg/kg of BW per h, glucose infused to maintain 90 ± 10% of baseline blood glucose for 96 h; d 6-10), (3) heat stress (HS; temperature-humidity index of 72.5 ± 0.2; d 16-20), and (4) HS + euglycemic clamp (EC; glucose infused to reach 100 ± 10% of TN baseline blood glucose for 96 h; d 21-25). Cows were fed and milked twice daily. Feed refusals were collected once daily for calculation of daily dry matter intake, and milk samples were collected at the beginning and end of each period for component analyses. Circulating insulin concentrations were measured in daily blood samples, whereas glucose concentrations were measured more frequently and variably in association with clamp procedures. Rectal temperatures and respiration rates were greater during HS than TN, as expected, and states of hyperinsulinemia and hypoglycemia were successfully induced by the HHC and high ambient temperatures (HS and EC). Feed intake differed based upon thermal environment as it was similar during TN and HHC periods, and declined for HS and EC. Milk production was not entirely reflective of feed intake as it was greatest during TN, intermediate during HHC, and lowest during HS and EC. All milk components differed with the experimental period, primarily in response to the thermal environment. Interestingly, TN baseline glucose concentrations were highly correlated with the change in glucose from TN to HS, and were related to glycemic status during HS. Furthermore, although few in number, those cows that failed to become hypoglycemic during HS tended to have a greater reduction in milk yield. The work presented here addresses a critical knowledge gap by broadening our understanding of the physiological response to heat stress and the related changes in glycemic state. This broadened understanding is fundamental for the development of novel, innovative management strategies as the dairy industry is compelled to become increasingly efficient in spite of global warming.


Asunto(s)
Enfermedades de los Bovinos , Trastornos de Estrés por Calor , Hiperinsulinismo , Hipoglucemia , Insulinas , Animales , Glucemia , Bovinos , Dieta/veterinaria , Femenino , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Calor , Hiperinsulinismo/veterinaria , Hipoglucemia/veterinaria , Hipoglucemiantes/farmacología , Lactancia/fisiología , Leche
7.
J Dairy Sci ; 103(10): 9620-9633, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32773314

RESUMEN

Inflammation appears to be a predisposing factor and key component of hepatic steatosis in a variety of species. Objectives were to evaluate effects of inflammation [induced via intravenous lipopolysaccharide (LPS) infusion] on metabolism and liver lipid content in experimentally induced hyperlipidemic lactating cows. Cows (765 ± 32 kg of body weight; 273 ± 35 d in milk) were enrolled in 2 experimental periods (P); during P1 (5 d), baseline data were obtained. At the start of P2 (2 d), cows were assigned to 1 of 2 treatments: (1) intralipid plus control (IL-CON; 3 mL of saline; n = 5) or (2) intralipid plus LPS (IL-LPS; 0.375 µg of LPS/kg of body weight; n = 5). Directly following intravenous bolus (saline or LPS) administration, intralipid (20% fat emulsion) was intravenously infused continuously (200 mL/h) for 16 h to induce hyperlipidemia during which feed was removed. Blood samples were collected at -0.5, 0, 4, 8, 12, 16, 24, and 48 h relative to bolus administration, and liver biopsies were obtained on d 1 of P1 and at 16 and 48 h after the bolus. By experimental design (feed was removed during the first 16 h of d 1), dry matter intake decreased in both treatments on d 1 of P2, but the magnitude of reduction was greater in LPS cows. Dry matter intake of IL-LPS remained decreased on d 2 of P2, whereas IL-CON cows returned to baseline. Milk yield decreased in both treatments during P2, but the extent and duration was longer in LPS-infused cows. Administering LPS increased circulating LPS-binding protein (2-fold) at 8 h after bolus, after which it markedly decreased (84%) below baseline for the remainder of P2. Serum amyloid A concentrations progressively increased throughout P2 in IL-LPS cows (3-fold, relative to controls). Lipid infusion gradually increased nonesterified fatty acids and triglycerides in both treatments relative to baseline (3- and 2.5-fold, respectively). Interestingly, LPS infusion blunted the peak in nonesterified fatty acids, such that concentrations peaked (43%) higher in IL-CON compared with IL-LPS cows and heightened the increase in serum triglycerides (1.5-fold greater relative to controls). Liver fat content remained similar in IL-LPS relative to P1 at 16 h; however, hyperlipidemia alone (IL-CON) increased liver fat (36% relative to P1). No treatment differences in liver fat were observed at 48 h. In IL-LPS cows, circulating insulin increased markedly at 4 h after bolus (2-fold relative to IL-CON), and then gradually decreased during the 16 h of lipid infusion. Inducing inflammation with simultaneous hyperlipidemia altered the characteristic patterns of insulin and LPS-binding protein but did not cause fatty liver.


Asunto(s)
Enfermedades de los Bovinos/metabolismo , Inflamación/veterinaria , Hígado/metabolismo , Triglicéridos/metabolismo , Proteínas de Fase Aguda , Animales , Peso Corporal , Proteínas Portadoras/sangre , Bovinos , Enfermedades de los Bovinos/inducido químicamente , Ácidos Grasos no Esterificados/sangre , Femenino , Hiperlipidemias/inducido químicamente , Hiperlipidemias/metabolismo , Hiperlipidemias/veterinaria , Inflamación/inducido químicamente , Inflamación/metabolismo , Insulina/sangre , Lactancia , Lipopolisacáridos , Glicoproteínas de Membrana/sangre , Leche
8.
Theriogenology ; 154: 73-83, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32531658

RESUMEN

Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.


Asunto(s)
Trastornos de Estrés por Calor , Enfermedades de los Porcinos , Animales , Biología , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Calor , Reproducción , Porcinos
9.
J Anim Sci ; 96(2): 510-520, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29385474

RESUMEN

Heat stress (HS) negatively impacts several swine production variables, including carcass fat quality and quantity. Pigs reared in HS have more adipose tissue than energetically predicted, explainable, in part, by HS-induced hyperinsulinemia. Study objectives were to evaluate insulin's role in altering fat characteristics during HS via feeding insulin-sensitizing compounds. Forty crossbred barrows (113 ± 9 kg BW) were randomly assigned to one of five environment by diet treatments: 1) thermoneutral (TN) fed ad libitum (TNAL), 2) TN and pair-fed (TNPF), 3) HS fed ad libitum (HSAL), 4) HS fed ad libitum with sterculic oil (SO) supplementation (HSSO; 13 g/d), and 5) HS fed ad libitum with dietary chromium (Cr) supplementation (HSCr; 0.5 mg/d; Kemin Industries, Des Moines, IA). The study consisted of three experimental periods (P). During P0 (2 d), all pigs were exposed to TN conditions (23 ± 3 °C, 68 ± 10% RH) and fed ad libitum. During P1 (7 d), all pigs received their respective dietary supplements, were maintained in TN conditions, and fed ad libitum. During P2 (21 d), HSAL, HSSO, and HSCr pigs were fed ad libitum and exposed to cyclical HS conditions (28 to 33 °C, 58 ± 10% RH). The TNAL and TNPF pigs remained in TN conditions and were fed ad libitum or pair-fed to their HSAL counterparts. Rectal temperature (TR), respiration rate (RR), and skin temperature (TS) were obtained daily at 0600 and 1800 h. At 1800 h, HS exposed pigs had increased TR, RR, and TS relative to TNAL controls (1.13 °C, 48 bpm, and 3.51 °C, respectively; P < 0.01). During wk 2 and 3 of P2, HSSO pigs had increased 1800 h TR relative to HSAL and HSCr (~0.40 and ~0.42 °C, respectively; P ≤ 0.05). Heat stress decreased ADFI and ADG compared to TNAL pigs (2.24 vs. 3.28 and 0.63 vs. 1.09 kg/d, respectively; P < 0.01) and neither variable was affected by SO or Cr supplementation. Heat stress increased or tended to increase moisture content of abdominal (7.7 vs. 5.9%; P = 0.07) and inner s.c. (11.4 vs. 9.8%; P < 0.05) adipose depots compared to TNAL controls. Interestingly, TNPF pigs also had increased adipose tissue moisture content and this was most pronounced in the outer s.c. depot (15.0 vs. 12.2%; P < 0.01) compared to TNAL pigs. Heat stress had little or no effect on fatty acid composition of abdominal, inner, and outer s.c. adipose tissue depots. In summary, the negative effects of HS on fat quality do not appear to be fatty acid composition related, but may be explained by increased adipose tissue moisture content.


Asunto(s)
Cromo/farmacología , Suplementos Dietéticos , Insulina/metabolismo , Porcinos/fisiología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/fisiología , Animales , Dieta/veterinaria , Calor , Masculino , Distribución Aleatoria , Frecuencia Respiratoria/efectos de los fármacos , Estrés Fisiológico
10.
J Anim Sci ; 95(6): 2438-2451, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28727070

RESUMEN

Heat stress (HS) causes morbidities and mortalities, in part by inducing organ-specific injury and dysfunction. Further, HS markedly reduces farm animal productivity, and this is especially true for lean tissue accretion. The purpose of this investigation was to determine the extent to which short-term HS caused muscle dysfunction in skeletal muscle. We have previously found increased free radical injury in skeletal muscle following 24 h of HS. Thus, we hypothesized that HS would lead to apoptosis, autophagy, and decreased mitochondrial content in skeletal muscle. To test this hypothesis, crossbred gilts were divided into 3 groups ( = 8/group): thermal neutral (TN: 21°C), HS (37°C), and pair-fed thermal neutral (PFTN: feed intake matched with heat-stressed animals). Following 12 h of treatment, animals were euthanized and red (STR) and white (STW) portions of the semitendinosus were recovered. Heat stress did not alter intracellular signaling in STW. In STR, the oxidative stress marker malondialdehyde protein and concentration were increased in HS ( = 0.007) compared to TN and PFTN, which was matched by an inadequate antioxidant response, including an increase in superoxide dismutase (SOD) I ( = 0.03) and II relative protein abundance ( = 0.008) and total SOD activity ( = 0.02) but a reduction ( = 0.006) in catalase activity in HS compared to TN. Further, B-cell lymphoma 2-associated X protein ( = 0.02) and apoptotic protease activating factor 1 ( = 0.01) proteins were increased by HS compared to TN and PFTN. However, caspase 3 activity was similar between groups, indicating a lack of apoptotic execution. Despite increased initiation, autophagy appeared to be inhibited by HS as the microtubule-associated protein A/B light chain 3 II/I ratio and mitofusin-2 proteins were decreased ( < 0.03) and sequestosome 1(p62) protein abundance was increased ( = 0.001) in HS compared to TN and PFTN. Markers of mitochondrial content cytochrome c, cytochrome c oxidase IV, voltage-dependent anion channel, pyruvate dehydrogenase, and prohibitins 1 were increased ( < 0.05) in HS compared to TN, whereas mitochondrial biogenesis and mitophagy markers were similar between groups. These data demonstrate that HS caused aberrant intracellular signaling, which may contribute to HS-mediated muscle dysfunction.


Asunto(s)
Respuesta al Choque Térmico , Músculo Esquelético/fisiología , Transducción de Señal , Porcinos/fisiología , Animales , Antioxidantes/metabolismo , Apoptosis , Autofagia , Femenino , Radicales Libres , Proteínas de Choque Térmico , Calor , Estrés Oxidativo
11.
J Anim Sci ; 95(3): 1264-1276, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28380535

RESUMEN

The objectives of this study were to elucidate the effects of a dirty environment and a challenge plus associated environmental contamination on pig growth performance, diet utilization efficiency, and gas emissions (CO, NH, CH, NO, and HS) from stored manure. Twenty-four weaned barrows, aged 31 d at initiation of the trial, were randomly allotted to 3 different treatments in a completely randomized design. Treatments were: pigs housed in cages with manure removed and cages washed daily (Clean); pigs housed in cages sprayed daily with manure slurry mixtures (Dirty); or pigs challenged with Typhimurium DT104 and housed in cages that were not washed, but manure was removed daily ( challenge). Rectal temperature, body weight, daily feed intake, manure output, manure composition, and gas emissions from stored manure were measured throughout the 24-d animal phase. The Dirty and challenge treatments were statistically compared to the Clean treatment to evaluate individual effects. Dirty housing tended to decrease ADG from d 1 to 24 ( = 0.06) but there were no other effects on pig performance compared with the Clean treatment. In contrast, a challenge was associated with a marked reduction in each of the measured indicators of pig performance. challenge increased the carbon to nitrogen ratio, ether extract, and lignin concentrations in excreted manure ( = 0.02, 0.01, 0.003, respectively), and increased manure and head space temperatures in manure tanks ( < 0.0001). Gas emissions from stored manure of pigs on the Dirty or treatments were increased for each of the measured gases as compared to the Clean treatment ( < 0.01) when expressed per unit of BW gain. When gas emissions from manure of pigs housed in the Dirty treatment were expressed per unit of manure volatile solids (VS), they were increased for NH, CH, and HS ( < 0.02). challenge was associated with increased emissions of CO, and NO and decreased emissions of HS per kilogram manure VS compared to the Clean treatment ( = 0.06, 0.03, 0.04, respectively). Collectively, these results indicated that a challenge and associated housing contamination caused depressed growth rate and increased manure gas emissions, while exposure to a Dirty environment slightly reduced growth performance and clearly increased manure gas emissions per unit of BW gain as compared to Clean control.


Asunto(s)
Vivienda para Animales , Salmonella typhimurium/aislamiento & purificación , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Gases , Masculino , Estiércol/análisis , Distribución Aleatoria , Porcinos/crecimiento & desarrollo , Destete
12.
J Anim Sci ; 94(5): 1791-802, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27285676

RESUMEN

Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.


Asunto(s)
Insulina/metabolismo , Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Transducción de Señal , Animales , Endocrinología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
J Dairy Sci ; 99(7): 5780-5792, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27085397

RESUMEN

Prepubertal exposure of the developing ovaries and reproductive tract (RT) to estrogen or xenoestrogens can have acute and long-term consequences that compromise the reproductive performance of cattle. This research examined effects of the selective estrogen receptor modulator tamoxifen (TAM) on gene and protein abundance in prepubertal ovaries and RT, with a particular focus on signaling pathways that affect morphology. Tamoxifen was administered to Holstein heifer calves (n=8) daily (0.3mg/kg subcutaneously) from 28 to 120 d of age, when tissues were collected. Control calves (n=7) received an equal volume of excipient. Weight, gross measurements, and samples of reproductive tissues were collected, and protein and mRNA were extracted from snap-frozen samples of vagina, cervix, uterus, oviduct, ovary, and liver. Neither estradiol nor insulin-like growth factor I (IGFI) concentrations in the serum were affected by TAM treatment. Tamoxifen treatment reduced ovarian weight independently from effects on antral follicle populations, as there was no difference in visible antral follicle numbers on the day of collection. Estrogen receptor α (ESR1) and ß (ESR2) mRNA, ESR1 protein, IGFI, progesterone receptor, total growth hormone receptor, WNT4, WNT5A, and WNT7A mRNA, in addition to mitogen-activated protein kinase (MAPK) and phosphorylated MAPK proteins were affected differently depending on the tissue examined. However, neither IGFI receptor mRNA nor protein abundance were affected by TAM treatment. Results indicate that reproductive development in prepubertal Holstein heifer calves is TAM-sensitive, and that bovine RT and ovarian development are supported, in part, by estrogen receptor-dependent mechanisms during the period studied here. Potential long-term consequences of such developmental disruption remain to be defined.


Asunto(s)
Bovinos/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Tamoxifeno , Animales , Estradiol/farmacología , Femenino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ovario/efectos de los fármacos , Receptores de Estrógenos/metabolismo
14.
J Dairy Sci ; 99(5): 4032-4042, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26971163

RESUMEN

Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each period, but the phosphorylation ratio (abundance of phosphorylated protein:abundance of total protein) of AKT was decreased in P2 for TNPF animals, but not during WFHS. These results indicate that mild systemic insulin resistance during HS may be related to reduced nutrient intake but skeletal muscle and liver insulin signaling remains unchanged.


Asunto(s)
Glucosa/metabolismo , Hígado/fisiología , Músculo Esquelético/fisiología , Animales , Bovinos , Femenino , Respuesta al Choque Térmico , Insulina/análisis , Resistencia a la Insulina , Lactancia , Leche/metabolismo
15.
J Anim Sci ; 93(9): 4312-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26440331

RESUMEN

In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.


Asunto(s)
Trastornos de Estrés por Calor/veterinaria , Calor , Enfermedades de los Porcinos/patología , Animales , Temperatura Corporal , Femenino , Trastornos de Estrés por Calor/patología , Paridad , Embarazo , Porcinos , Factores de Tiempo
16.
J Anim Sci ; 93(9): 4424-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26440342

RESUMEN

The objectives of this study were to examine the effects of porcine reproductive and respiratory syndrome virus (PRRSV) infection and vaccination on pig growth, dietary nutrient efficiency of utilization, manure output, and emissions of CO, CH, HS, NO, and NH gases from stored manure. Forty-eight pigs, aged 21 d at the start of the study, were subjected to 1 of 4 treatment combinations arranged in a 2 × 2 factorial design with main factors of PRRSV vaccination and PRRSV infection. Body weight, ADFI, manure output, and nutrient efficiency of utilization were assessed and gas emissions from stored manure were determined daily from 50 to 78 d of age and for 24 d after completion of the animal phase. Infection with PRRSV markedly reduced final BW, ADG, and ADFI ( < 0.01) and reduced efficiencies of ADF and ether extract utilization ( = 0.05 and = 0.02, respectively) regardless of vaccination status. No significant treatment effects were found on manure output, manure pH, efficiencies of lignin utilization, and N retention. Infecting pigs with PRRSV increased daily manure CO emission per pig ( = 0.01). There was an interaction between immunization and infection for NO per pig with manure from uninfected, vaccinated pigs producing as much as the manure from infected, vaccinated pigs whereas there was a difference by PRRSV infection state for nonvaccinated pigs. There were also interactions between treatments for HS and NO emissions per kilogram of manure volatile solids excreted ( = 0.01 and = 0.0001, respectively) with the same pattern as for NO per pig; that is, the vaccinated pigs had similar rates of emission regardless of infection state. Pigs infected with PRRSV increased NO nitrogen per kilogram of total N excreted compared with noninfected groups ( = 0.03). Collectively, these results indicated that PRRSV infection caused decreased growth rates and nutrient utilization efficiency and increased gas emissions from stored manure.


Asunto(s)
Dieta/veterinaria , Estiércol/análisis , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vacunas Virales/inmunología , Animales , Síndrome Respiratorio y de la Reproducción Porcina/patología , Porcinos , Aumento de Peso
17.
J Dairy Sci ; 98(12): 8732-40, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433410

RESUMEN

Heat stress (HS) affects numerous physiological processes including nutrient partitioning and lipid metabolism. Objectives of this study were to evaluate how acute HS affects lipid metabolism in subcutaneous adipose tissue of dairy cattle. Adipose tissue biopsies were performed on Holstein cows for bovine primary adipocyte isolation and cultured at either 42°C (HS) or 37°C (thermal neutral, TN). Adipocytes were incubated with increasing isoproterenol (ISO), and with increasing concentrations of insulin in the presence of ISO to evaluate changes in lipolysis. Incorporation of radioactive acetate into lipids was measured as an indicator of lipogenesis. Abundance and phosphorylation of several lipolytic and lipogenic proteins were also measured. Adipocytes exposed to HS had an elevated maximal response to ISO and were more sensitive to lipolytic stimulation by ISO compared with cells cultured at TN. Thermal treatment did not affect the antilipolytic effects of insulin in the presence of ISO. Lipogenesis measured as acetate incorporation was not altered by HS, but a temperature by insulin interaction was observed for the regulation of acetyl CoA carboxylase, such that the presence of insulin resulted in a reduction in phosphorylation of acetyl CoA carboxylase in adipocytes cultured at TN but not HS conditions. Results of this study demonstrate that acute HS has a direct effect on the regulation of lipolysis and the rate-limiting enzyme of lipogenesis in isolated bovine adipocytes.


Asunto(s)
Adipocitos/metabolismo , Bovinos/metabolismo , Calor , Metabolismo de los Lípidos/fisiología , Acetil-CoA Carboxilasa/metabolismo , Adipocitos/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Células Cultivadas , Femenino , Insulina/farmacología , Isoproterenol/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/farmacología , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Fosforilación , Grasa Subcutánea/metabolismo
18.
Domest Anim Endocrinol ; 52: 43-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25804834

RESUMEN

The objective of this study was to evaluate in cattle, the effects of acute exposure to a heat stress (HS) environment on the status of the pituitary (thyrotropin, TSH)-thyroid (thyroxine, T4)-peripheral tissue T4 deiodination (type 1 5'-deiodinase [D1]; triiodothyronine [T3]; reverse-triiodothyronine [rT3]) axis, and the further response of this pituitary-thyroid-peripheral tissue axis (PTTA) to perturbation caused by the induction of the proinflammatory innate immune state provoked by the administration of gram-negative bacteria endotoxin (lipopolysaccharide [LPS]). Ten steers (318 ± 49 kg body weight) housed in controlled environment chambers were subjected to either a thermoneutral (TN: constant 19°C) or HS temperature conditions (cyclical daily temperatures: 32.2°C-40.0°C) for a total period of 9 d. To minimize the effects of altered plane of nutrition due to HS, steers in TN were pair-fed to animals in HS conditions. Steers received 2 LPS challenges 3 d apart (LPS1 and LPS2; 0.2 µg/kg body weight, intravenously, Escherichia coli 055:B5) with the first challenge administered on day 4 relative to the start of the environmental conditioning. Jugular blood samples were collected at 0, 1, 2, 4, 7, and 24 h relative to the start of each LPS challenge. Plasma TSH, T4, T3, and rT3 were measured by radioimmunoassay. Liver D1 activity was measured in biopsy samples collected before the LPS1 (0 h) and 24 h after LPS2. Before the start of LPS1, HS decreased (P < 0.01 vs TN) plasma TSH (40%), T4 (45.4%), and T3 (25.9%), but did not affect rT3 concentrations. In TN steers, the LPS1 challenge decreased (P < 0.01 vs 0 h) plasma concentrations of TSH between 1 and 7 h and T4 and T3 at 7 and 24 h. In HS steers, plasma TSH concentrations were decreased at 2 h only (P < 0.05), whereas plasma T3 was decreased at 7 and 24 h (P < 0.01). Whereas plasma T4 concentrations were already depressed in HS steers at 0 h, LPS1 did not further affect the levels. Plasma rT3 concentrations were increased in all steers at 4, 7, and 24 h after LPS1 (P < 0.01). The patterns of concentration change of T4, T3, and rT3 during LPS2 mirrored those observed in LPS1; the responses in plasma TSH were of smaller magnitude than those incurred after LPS1. The LPS challenges reduced (P < 0.01) hepatic activity of D1 in all animals but no differences were observed between steers subjected to TN or HS environment. The data are consistent with the concept that acute exposure of cattle to a HS environment results in the depression of the pituitary and thyroid components of the PTTA, whereas a normal capacity to generate T3 from T4 in the liver is preserved. The data also suggest that LPS challenge further suppresses all components of the PTTA including liver T3 generation, and these PTTA perturbations are more pronounced in steers that encounter a HS exposure.


Asunto(s)
Bovinos/fisiología , Calor , Lipopolisacáridos/farmacología , Estrés Fisiológico , Glándula Tiroides/fisiología , Animales , Yoduro Peroxidasa/metabolismo , Hígado/enzimología , Hígado/metabolismo , Masculino , Hipófisis/fisiología , Proteína Amiloide A Sérica/análisis , Estrés Fisiológico/inmunología , Estrés Fisiológico/fisiología , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre , Triyodotironina Inversa/sangre
19.
J Dairy Sci ; 98(5): 3152-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25771054

RESUMEN

Two experiments were performed to determine the effects of heat stress (HS) and insulin on hepatic mRNA abundance of enzymes responsible for metabolizing progesterone [cytochrome P450 2C and 3A (CYP2C and CYP3A)]. To distinguish the direct effects of HS from decreased dry matter intake, cohorts were pair fed (PF) in thermoneutral conditions to match the intake of the HS cows during both experiments. In the first experiment, multiparous late-lactation Holstein cows (n=12, 305±33 d in milk) housed in climate-controlled chambers were subjected to 2 experimental periods: (1) thermoneutral (TN) conditions (18°C, 20% humidity) with ad libitum intake (TN and well fed) for 9 d; and (2) either HS conditions (cyclical temperature 31-40°C, 20% humidity) fed for ad libitum intake (n=6), or TN conditions and PF to match the HS animal (n=6) for 9 d. To evaluate hepatic gene expression during experiment 1, biopsies were obtained at the end of each period. In the second experiment, multiparous mid-lactation Holstein cows (n=12, 136±8 DIM) were housed and fed in conditions similar to those described for the first experiment. Liver biopsies were obtained immediately before and after an insulin tolerance test administered on d 6 of each period. No effects of exogenous insulin were observed on any of the tested variables, nor were there interactions between environment (TN/HS or well fed/PF) and insulin administration. Heat stress decreased hepatic CYP2C expression during both experiments. The relative abundance of CYP3A was not affected by environmental conditions in the late-lactation cows (first experiment), but was reduced by HS in the mid-lactation cows (second experiment). Interestingly, during experiment 2, hepatic CYP3A expression also decreased during PF. These results suggest that HS reduces the capacity of the liver to metabolize progesterone through distinct effects on CYP2C and CYP3A, and that the effects appear to vary based upon stage of lactation. Ultimately, HS may affect reproductive outcomes by reducing the abundance of the enzymes responsible for the breakdown of progesterone. This reduction could serve as a beneficial adaptation for rescuing early embryos or may be detrimental, as it affects feedback mechanisms necessary for proper cyclicity.


Asunto(s)
Bovinos/fisiología , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Calor , Hígado/enzimología , Progesterona/metabolismo , Adaptación Fisiológica , Animales , Citocromo P-450 CYP3A/análisis , Citocromo P-450 CYP3A/genética , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/genética , Femenino , Expresión Génica , Humedad , Insulina/farmacología , Lactancia , Metabolismo de los Lípidos , ARN Mensajero/análisis , Estrés Fisiológico/fisiología , Temperatura
20.
J Anim Sci ; 93(1): 71-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25568358

RESUMEN

Environmentally induced heat stress (HS) negatively influences production variables in agriculturally important species. However, the extent to which HS experienced in utero affects nutrient partitioning during the rapid lean tissue accretion phase of postnatal growth is unknown. Study objectives were to compare future whole-body tissue accretion rates in pigs exposed to differing in utero and postnatal thermal environments when lean tissue deposition is likely maximized. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 12) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 30.8 ± 0.2 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 30.3 ± 0.2 kg BW) were euthanized as an initial slaughter group (ISG). Following the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 34.1 ± 0.5 kg BW) and IUHS (n = 12 gilts and 12 barrows; 33.3 ± 0.3 kg BW) were exposed to constant HS (34.1 ± 2.4°C) or TN (21.5 ± 2.0°C) conditions until they reached 61.5 ± 0.8 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased (P < 0.01) during postnatal HS compared to TN (39.4 vs. 39.0°C and 94 vs. 49 breaths per minute, respectively). Regardless of in utero environment, postnatal HS reduced (P < 0.01) feed intake (2.06 vs. 2.37 kg/d) and ADG (0.86 vs. 0.98 kg/d) compared to TN conditions. Postnatal HS did not alter water, protein, and ash accretion rates but reduced lipid accretion rates (198 vs. 232 g/d; P < 0.04) compared to TN-reared pigs. In utero environment had no effect on future tissue deposition rates; however, IUHS pigs from the ISG had reduced liver weight (P < 0.04; 17.9%) compared to IUTN controls. In summary, postnatal HS reduced adipose tissue accretion rates, but IUHS did not appear to impact either lean or adipose tissue accretion during this specific growth phase.


Asunto(s)
Composición Corporal/fisiología , Trastornos de Estrés por Calor/veterinaria , Calor , Estrés Fisiológico , Enfermedades de los Porcinos/etiología , Porcinos/fisiología , Animales , Temperatura Corporal , Femenino , Trastornos de Estrés por Calor/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Porcinos/crecimiento & desarrollo , Enfermedades de los Porcinos/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...