Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 218(2): 470-478, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29397029

RESUMEN

In alpine ecosystems, nitrogen (N) deposition has been linked to plant community composition change, including loss of bryophytes and increase of graminoids. Since bryophyte growth is stimulated by increased N availability, it has been hypothesized that loss of bryophyte cover is driven by enhanced decomposition. As bryophyte mats are a significant carbon (C) store, their loss may impact C storage in these ecosystems. We used an N deposition gradient across 15 sites in the UK to examine effects of N deposition on bryophyte litter quality, decomposition and C and N stocks in Racomitrium moss-sedge heath. Increasing N deposition reduced C : N in bryophyte litter, which in turn enhanced decomposition. Soil N stocks increased significantly in response to increased N deposition, and soil C : N declined. However, depletion of the bryophyte mat and its replacement by graminoids under high N deposition was not associated with a change in total ecosystem C stocks. We conclude that decomposition processes in Racomitrium heath are very sensitive to N deposition and provide a mechanism by which N deposition drives depletion of the bryophyte mat. Nitrogen deposition did not measurably alter C stocks, but changes in soil N stocks and C : N suggest the ecosystem is becoming N saturated.


Asunto(s)
Briófitas/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Biomasa , Geografía , Modelos Lineales , Hojas de la Planta/fisiología , Reino Unido
2.
Environ Pollut ; 235: 956-964, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29358149

RESUMEN

The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SOx emissions, decreases in SOx are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SOx deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SOx) was related to decreased SOx deposition. However there was no evidence of a recovery from SOx deposition in the Acid or Lolium grasslands. Despite a decline in NOx deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats.


Asunto(s)
Biodiversidad , Cambio Climático , Pradera , Plantas/clasificación , Azufre/farmacología , Briófitas , Ecosistema , Nitrógeno/análisis , Poaceae/clasificación , Poaceae/crecimiento & desarrollo , Escocia , Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...