Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448566

RESUMEN

Dirty panicle disease in coconuts (Cocos nucifera) was first observed in the KU-BEDO Coconut BioBank, Nakhon Pathom province, Thailand. The occurrence of the disease covers more than 30% of the total coconut plantation area. The symptoms include small brown to dark brown spots and discoloration of male flowers. Herein, three fungal strains were isolated from infected samples. Based on the morphological characteristics the fungal isolates, they were classified into two genera, namely, Alternaria (Al01) and Fusarium (FUO01 and FUP01). DNA sequences of internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-α (tef1-α), and RNA polymerase II second largest subunit (rpb2) revealed Al01 as Alternaria burnsii, whereas DNA sequences of ITS, rpb2, and tef1-α identified FUO01 and FUP01 as Fusarium clavum and F. tricinctum, respectively. A pathogenicity test by the agar plug method demonstrated that these pathogens cause dirty panicle disease similar to that observed in natural infections. To the best of our knowledge, this is the first report on the novel dirty panicle disease in coconuts in Thailand or elsewhere, demonstrating that it is associated with the plant pathogenic fungi A. burnsii, F. clavum, and F. tricinctum.

2.
Sci Rep ; 12(1): 3718, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260602

RESUMEN

Luffa is a genus of tropical and subtropical vines belonging to the Cucurbitaceae family. Sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula) are two important species of the genus Luffa and are good sources of human nutrition and herbal medicines. As a vegetable, aromatic luffa is more preferred by consumers than nonaromatic luffa. While the aroma trait is present in the sponge gourd, the trait is not present in the ridge gourd. In this study, we identified Luffa cylindrica's betaine aldehyde dehydrogenase (LcBADH) as a gene associated with aroma in the sponge gourd based on a de novo assembly of public transcriptome data. A single nucleotide polymorphism (SNP: A > G) was identified in exon 5 of LcBADH, causing an amino acid change from tyrosine to cysteine at position 163, which is important for the formation of the substrate binding pocket of the BADH enzyme. Based on the identified SNP, a TaqMan marker, named AroLuff, was developed and validated in 370 F2 progenies of the sponge gourd. The marker genotypes were perfectly associated with the aroma phenotypes, and the segregation ratios supported Mendelian's simple recessive inheritance. In addition, we demonstrated the use of the AroLuff marker in the introgression of LcBADH from the aromatic sponge gourd to the ridge gourd to improve aroma through interspecific hybridization. The marker proved to be useful in improving the aroma characteristics of both Luffa species.


Asunto(s)
Luffa , Betaína Aldehído Deshidrogenasa/genética , Luffa/química , Odorantes , Polimorfismo de Nucleótido Simple , Pirroles , Verduras
3.
Genes (Basel) ; 12(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680982

RESUMEN

Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Xanthomonas/patogenicidad , Alelos , Cromosomas de las Plantas , Genes de Plantas , Marcadores Genéticos , Oryza/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
4.
Hortic Res ; 7: 156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082963

RESUMEN

Coconut (Cocos nucifera L.) is an important economic crop in tropical countries. However, the lack of a complete reference genome and the limitations of usable DNA markers hinder genomic studies and the molecular breeding of coconut. Here, we present the results of simple sequence repeat (SSR) mining from a high-throughput genotyping-by-sequencing (GBS) study of a collection of 38 coconut accessions. A total of 22,748 SSRs with di-, tri-, tetra-, penta- and hexanucleotide repeats of five or more were identified, 2451 of which were defined as polymorphic loci based on locus clustering in 38 coconut accessions, and 315 loci were suitable for the development of SSR markers. One hundred loci were selected, and primer pairs for each SSR locus were designed and validated in 40 coconut accessions. The analysis of 74 polymorphic markers identified between 2 and 9 alleles per locus, with an average of 3.01 alleles. The assessment of the genetic diversity and genetic relationships among the 40 coconut varieties based on the analysis of population structure, principal coordinate analysis (PCoA), and phylogenetic tree analysis using the 74 polymorphic SSR markers revealed three main groups of coconuts in Thailand. The identified SSR loci and SSR markers developed in this study will be useful for the study of coconut diversity and molecular breeding. The SSR mining approach used in this study could be applied to other plant species with a complex genome regardless of the availability of reference genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...