Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 55(5): 723-32, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25066234

RESUMEN

Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes repair of a subset of DNA DSBs at early time points, which can be rescued by inhibiting transcription globally. An ATM phosphorylation site on BAF180, a PBAF subunit, is required for both processes. Furthermore, we find that subunits of the PRC1 and PRC2 polycomb group complexes are similarly required for DSB-induced silencing and promoting repair. Cancer-associated BAF180 mutants are unable to restore these functions, suggesting PBAF's role in repressing transcription near DSBs may contribute to its tumor suppressor activity.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Roturas del ADN , Reparación del ADN , Regulación de la Expresión Génica , Factores de Transcripción/fisiología , Sitios de Unión , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Ubiquitinación
2.
DNA Repair (Amst) ; 9(9): 1003-10, 2010 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-20674517

RESUMEN

Artemis is required for V(D)J recombination and the repair of a subset of radiation-induced DNA double strand breaks (DSBs). Artemis-null patients display radiosensitivity (RS) and severe combined immunodeficiency (SCID), classified as RS-SCID. Strongly impacting hypomorphic Artemis mutations confer marked infant immunodeficiency and a predisposition for EBV-associated lymphomas. Here, we provide evidence that a polymorphic Artemis variant (c.512C > G: p.171P > R), which has a world-wide prevalence of 15%, is functionally impacting. The c.512C > G mutation causes an approximately 3-fold decrease in Artemis endonuclease activity in vitro. Cells derived from a patient who expressed a single Artemis allele with the polymorphic mutational change, showed radiosensitivity and a DSB repair defect in G2 phase, with Artemis cDNA expression rescuing both phenotypes. The c.512C > G change has an additive impact on Artemis function when combined with a novel C-terminal truncating mutation (p.436C > X), which also partially inactivates Artemis activity. Collectively, our findings provide strong evidence that monoallelic expression of the c.512C > G variant impairs Artemis function causing significant radiosensitivity and a G2 phase DSB repair defect. The patient exhibiting monoallelic c.512C > G-Artemis expression showed immunodeficiency only in adulthood, developed bilateral carcinoma of the nipple and myelodysplasia raising the possibility that modestly decreased Artemis function can impact clinically.


Asunto(s)
Artemisia/genética , Polimorfismo Genético , Tolerancia a Radiación , Animales , Secuencia de Bases , Cartilla de ADN , Técnica del Anticuerpo Fluorescente
3.
Nucleic Acids Res ; 37(2): 482-92, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19056826

RESUMEN

XLF-Cernunnos (XLF) is a component of the DNA ligase IV-XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylated by pyrophosphate or following LX decharging during ligation. XLF enhances LX ligation activity in an ATP-independent and dependent manner. ATP-independent stimulation can be attributed to enhanced end-bridging. Whilst ATP alone fails to stimulate LX ligation activity, addition of XLF and ATP promotes ligation in a manner consistent with XLF-stimulated readenylation linked to ligation. We show that XLF is a weakly bound partner of the tightly associated LX complex and, unlike XRCC4, is dispensable for LX stability. 2BN cells, which have little, if any, residual XLF activity, show a 3-fold decreased ability to repair DNA double strand breaks covering a range of complexity. These findings strongly suggest that XLF is not essential for NHEJ but promotes LX adenylation and hence ligation. We propose a model in which XLF, by in situ recharging DNA ligase IV after the first ligation event, promotes double stranded ligation by a single LX complex.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Células Cultivadas , Cricetinae , ADN Ligasa (ATP) , Etopósido/toxicidad , Humanos , Ratones , Cinostatina/toxicidad
4.
DNA Repair (Amst) ; 6(11): 1692-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17644493

RESUMEN

Immunofluorescence detection of gammaH2AX foci is a widely used tool to quantify the induction and repair of DNA double-strand breaks (DSBs) induced by ionising radiation. We observed that X-irradiation of mammalian cells exposed on glass slides induced twofold higher foci numbers compared to irradiation with gamma-rays. Here, we show that the excess gammaH2AX foci after X-irradiation are produced from secondary radiation particles generated from the irradiation of glass slides. Both 120 kV X-rays and (137)Cs gamma-rays induce approximately 20 gammaH2AX foci per Gy in cells growing on thin ( approximately 2 microm) plastic foils immersed in water. The same yield is obtained following gamma-irradiation of cells growing on glass slides. However, 120 kV X-rays produce approximately 40 gammaH2AX foci per Gy in cells growing on glass, twofold greater than obtained using cells irradiated on plastic surfaces. The same increase in gammaH2AX foci number is obtained if the plastic foil on which the cells are grown is irradiated on a glass slide. Thus, the physical proximity to the glass material and not morphological differences of cells growing on different surfaces accounts for the excess gammaH2AX foci. The increase in foci number depends on the energy and is considerably smaller for 25 kV relative to 120 kV X-rays, a finding which can be explained by known physical properties of radiation. The kinetics for the loss of foci, which is taken to represent the rate of DSB repair, as well as the Artemis dependent repair fraction, was similar following X- or gamma-irradiation, demonstrating that DSBs induced by this range of treatments are repaired in an identical manner.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Fibroblastos/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Rayos gamma , Humanos , Cinética , Factores de Tiempo
5.
EMBO J ; 25(16): 3880-9, 2006 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16874298

RESUMEN

The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) autophosphorylation at the T2609-T2647 cluster, in the presence of Ku and target DNA, is required for Artemis-mediated endonuclease activity. Moreover, autophosphorylated DNA-PKcs stably associates with Ku-bound DNA with large single-stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA-PK that enhance Artemis cleavage at single-strand to double-strand DNA junctions. These findings demonstrate that DNA-PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.


Asunto(s)
Reparación del ADN , Proteína Quinasa Activada por ADN/química , Proteínas Nucleares/química , Dominio Catalítico , ADN/química , ADN Helicasas/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN , Endonucleasas/química , Endonucleasas/genética , Humanos , Autoantígeno Ku , Proteínas Nucleares/genética , Fosforilación , Conformación Proteica , Recombinación Genética , Serina/química
6.
Mol Cell ; 16(5): 715-24, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15574327

RESUMEN

The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.


Asunto(s)
Daño del ADN , Histonas/metabolismo , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Reparación del ADN , Enzimas Reparadoras del ADN , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Endonucleasas , Epistasis Genética , Rayos gamma , Prueba de Complementación Genética , Humanos , Rayos Infrarrojos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Homóloga de MRE11 , Ratones , Proteínas Nucleares/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Inmunodeficiencia Combinada Grave , Transducción de Señal , Factores de Tiempo , Proteínas Supresoras de Tumor , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos X
7.
Cancer Res ; 64(2): 500-8, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14744762

RESUMEN

The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM's role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of gamma-H2AX nuclear foci and pulsed-field gel electrophoresis to quantify the repair of DSBs after X-ray doses between 0.02 and 80 Gy in confluence-arrested primary human fibroblasts from normal individuals and patients with mutations in ATM and DNA ligase IV, a core component of the nonhomologous end-joining (NHEJ) repair pathway. Cells with hypomorphic mutations in DNA ligase IV exhibit a substantial repair defect up to 24 h after treatment but continue to repair for several days and finally reach a level of unrepaired DSBs similar to that of wild-type cells. Additionally, the repair defect in NHEJ mutants is dose dependent. ATM-deficient cells, in contrast, repair the majority of DSBs with normal kinetics but fail to repair a subset of breaks, irrespective of the initial number of lesions induced. Significantly, after biologically relevant radiation doses and/or long repair times, the repair defect in AT cells is more pronounced than that of NHEJ mutants and correlates with radiosensitivity. NHEJ-defective cells analyzed for survival following delayed plating after irradiation show substantial recovery while AT cells fail to show any recovery. These data argue that the DSB repair defect underlies a significant component of the radiosensitivity of AT cells.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Ataxia Telangiectasia , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Línea Celular , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/efectos de la radiación , Proteínas de Unión al ADN , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Campo Pulsado , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Humanos , Immunoblotting , Cinética , Pulmón/citología , Pulmón/efectos de la radiación , Tolerancia a Radiación , Proteínas Supresoras de Tumor , Rayos X
8.
Nucleic Acids Res ; 31(8): 2157-67, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682366

RESUMEN

A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4-defective cell lines also showed impaired end joining in an in vitro assay using cell-free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4-defective line, and addition of the DNA ligase IV-XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV-XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV-XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Emparejamiento Base/genética , Línea Celular , Células Cultivadas , ADN Ligasa (ATP) , ADN Ligasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mutación , Plásmidos/genética , Plásmidos/metabolismo
9.
Oncogene ; 21(27): 4191-9, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12082606

RESUMEN

Cell lines from Nijmegen Breakage Syndrome (NBS) and ataxia telangiectasia (A-T) patients show defective S phase checkpoint arrest. In contrast, only A-T but not NBS cells are significantly defective in radiation-induced G1/S arrest. Phosphorylation of some ATM substrates has been shown to occur in NBS cells. It has, therefore, been concluded that Nbs1 checkpoint function is S phase specific. Here, we have compared NBS with A-T cell lines (AT-5762ins137) that express a low level of normal ATM protein to evaluate the impact of residual Nbs1 function in NBS cells. The radiation-induced cell cycle response of these NBS and 'leaky' A-T cells is almost identical; normal G2/M arrest after 2 Gy, intermediate G1/S arrest depending on the dose and an A-T-like S phase checkpoint defect. Thus, the checkpoint assays differ in their sensitivity to low ATM activity. Radiation-induced phosphorylation of the ATM-dependent substrates Chk2, RPAp34 and p53-Ser15 are similarly impaired in AT-5762ins137 and NBS cells in a dose dependent manner. In contrast, NBS cells show normal ability to activate ATM kinase following irradiation in vitro and in vivo. We propose that Nbs1 facilitates ATM-dependent phosphorylation of multiple downstream substrates, including those required for G1/S arrest.


Asunto(s)
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/metabolismo , Rotura Cromosómica/genética , Fase G1/fisiología , Genes cdc , Síndromes de Inmunodeficiencia/genética , Síndromes Neoplásicos Hereditarios/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas/metabolismo , Células Cultivadas/efectos de la radiación , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN , Relación Dosis-Respuesta en la Radiación , Fase G1/efectos de la radiación , Histonas/metabolismo , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Tolerancia a Radiación/genética , Síndrome , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...