Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS One ; 19(5): e0300310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776274

RESUMEN

Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.


Asunto(s)
Epigénesis Genética , Hipergravedad , Pez Cebra , Animales , Pez Cebra/genética , Metilación de ADN , Larva/genética , Larva/crecimiento & desarrollo , Embrión no Mamífero/metabolismo
2.
Alzheimers Dement ; 20(6): 3906-3917, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644660

RESUMEN

BACKGROUND: Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS: We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS: CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION: In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS: This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Imagen por Resonancia Magnética , Humanos , Síndrome de Down/patología , Síndrome de Down/complicaciones , Síndrome de Down/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Adulto , Anciano , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/patología , Prevalencia , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/patología , Angiopatía Amiloide Cerebral/complicaciones , Factores de Riesgo , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen
3.
Genomics ; 116(2): 110820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437972

RESUMEN

microRNA-210 (miRNA), a well-documented miRNA, has been implicated in a myriad of biological processes, including responses to hypoxia, angiogenesis, cell proliferation, and male infertility in humans. However, a comprehensive understanding of its functions in fish requires further investigation. This study pursued to elucidate the downstream effect of dre-miR-210-5p on primary ovarian cell culture in zebrafish (Danio rerio), an animal model. A protocol was settled down by incubations with either an miR-210 mimic or a scrambled miRNA in the isolated ovaries. RNA-sequencing analysis identified ∼6000 differentially expressed target genes revealing that downregulated genes were associated with reproduction-related pathways while immune-related pathways displayed an upregulated pattern. To identify molecular markers, predicted target genes were classified into reproduction and immune cell types. These findings underscore the existence of a profound interplay between the reproductive and immune systems, with miR-210 emerging as a pivotal player in orchestrating transcriptomic alterations within fish ovaries.


Asunto(s)
MicroARNs , Ovario , Humanos , Animales , Femenino , Masculino , Ovario/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética , Oocitos/metabolismo , Meiosis
5.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958987

RESUMEN

Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries.


Asunto(s)
Gónadas , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/fisiología , Gónadas/metabolismo , Ovario/metabolismo , Testículo/metabolismo , Epigénesis Genética
6.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37021589

RESUMEN

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Adulto , Enfermedad de Alzheimer/patología , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/complicaciones , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo
7.
Mol Ecol Resour ; 23(2): 453-470, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36305237

RESUMEN

The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.


Asunto(s)
Metilación de ADN , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/genética , Pez Cebra/metabolismo , Gónadas/metabolismo , Epigénesis Genética , Biomarcadores/metabolismo
8.
Sci Rep ; 12(1): 18722, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333360

RESUMEN

In the last decade, a plethora of microRNAs (miRNAs) has been reported in a wide variety of physiological processes, including reproduction, in many aquatic organisms. However, miRNAome alterations occurred by environmental cues due to water temperature increment have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, the animal model zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation, a treatment that results in male-skewed sex ratios in the adulthood. Once the fish reached adulthood, gonads were sequenced by high-throughput technologies and a total of 23 and 1 differentially expressed miRNAs in ovaries and testes, respectively, were identified two months after the heat treatment. Most of these heat-recorder miRNAs were involved in human sex-related cancer and about 400 predicted-target genes were obtained, some with reproduction-related functions. Their synteny in the zebrafish genome was, for more than half of the predicted target genes, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being the place where the sex-associated-region (sar) is localized in wild zebrafish. Further, spatial localization in the gonads of two selected heat-recorder miRNAs (miR-122-5p and miR-146-5p) showed exclusive expression in the ovarian germ cells. The present study expands the catalog of sex-specific miRNAs and deciphers, for the first time, thermosensitive miRNAs in the zebrafish gonads that might be used as potential epimarkers to predict environmental past events.


Asunto(s)
MicroARNs , Pez Cebra , Animales , Femenino , Masculino , Humanos , Adulto , Pez Cebra/genética , MicroARNs/genética , MicroARNs/metabolismo , Calor , Gónadas/metabolismo , Diferenciación Sexual/genética , Perfilación de la Expresión Génica
9.
BMC Biol ; 20(1): 208, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153614

RESUMEN

BACKGROUND: Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. RESULTS: In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. CONCLUSIONS: We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered.


Asunto(s)
Análisis de Datos , Transcriptoma , Animales , Biomarcadores , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones
10.
JAMA Netw Open ; 5(8): e2225573, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930282

RESUMEN

Importance: Alzheimer disease (AD) is the main medical problem in adults with Down syndrome (DS). However, the associations of age, intellectual disability (ID), and clinical status with progression and longitudinal cognitive decline have not been established. Objective: To examine clinical progression along the AD continuum and its related cognitive decline and to explore the presence of practice effects and floor effects with repeated assessments. Design, Setting, and Participants: This is a single-center cohort study of adults (aged >18 years) with DS with different ID levels and at least 6 months of follow-up between November 2012 and December 2021. The data are from a population-based health plan designed to screen for AD in adults with DS in Catalonia, Spain. Individuals were classified as being asymptomatic, having prodromal AD, or having AD dementia. Exposures: Neurological and neuropsychological assessments. Main Outcomes and Measures: The main outcome was clinical change along the AD continuum. Cognitive decline was measured by the Cambridge Cognitive Examination for Older Adults With Down Syndrome and the modified Cued Recall Test. Results: A total of 632 adults with DS (mean [SD] age, 42.6 [11.4] years; 292 women [46.2%]) with 2847 evaluations (mean [SD] follow-up, 28.8 [18.7] months) were assessed. At baseline, there were 436 asymptomatic individuals, 69 patients with prodromal AD, and 127 with AD dementia. After 5 years of follow-up, 17.1% (95% CI, 12.5%-21.5%) of asymptomatic individuals progressed to symptomatic AD in an age-dependent manner (0.6% [95% CI, 0%-1.8%] for age <40 years; 21.1% [95% CI, 8.0%-32.5%] for age 40-44 years; 41.4% [95% CI, 23.1%-55.3%] for age 45-49 years; 57.5% [95% CI, 38.2%-70.8%] for age ≥50 years; P < .001), and 94.1% (95% CI, 84.6%-98.0%) of patients with prodromal AD progressed to dementia with no age dependency. Cognitive decline in the older individuals was most common among those who progressed to symptomatic AD and symptomatic individuals themselves. Importantly, individuals with mild and moderate ID had no differences in longitudinal cognitive decline despite having different performance at baseline. This study also found practice and floor effects, which obscured the assessment of longitudinal cognitive decline. Conclusions and Relevance: This study found an association between the development of symptomatic AD and a high risk of progressive cognitive decline among patients with DS. These results support the need for population health plans to screen for AD-related cognitive decline from the fourth decade of life and provide important longitudinal data to inform clinical trials in adults with DS to prevent AD.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Discapacidad Intelectual , Adulto , Anciano , Enfermedad de Alzheimer/epidemiología , Cognición , Estudios de Cohortes , Síndrome de Down/psicología , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Pruebas Neuropsicológicas
11.
Environ Res ; 213: 113549, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618011

RESUMEN

Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide. Understanding the basis of neomale development is important for conservation biology. Among GSD species, it is unknown whether those with chromosomal sex determination (CSD), the most common system, will better resist the influence of high temperature than those with polygenic sex determination (PSD). Here, we compared the effects of elevated temperature in two wild zebrafish strains, Nadia (NA) and Ekkwill (EKW), which have CSD with a ZZ/ZW system, against the AB laboratory strain, which has PSD. First, we uncovered novel sex genotypes and the results showed that, at control temperature, the masculinization rate roughly doubled with the addition of each Z chromosome, while some ZW and WW fish of the wild strains became neomales. Surprisingly, we found that at elevated temperatures WW fish were just as likely as ZW fish to become neomales and that all strains were equally susceptible to masculinization. These results demonstrate that the Z chromosome is not essential for male development and that the dose of W buffers masculinization at the control temperature but not at elevated temperature. Furthermore, at the elevated temperature the testes of neomales, but not of normal males, contained more spermatozoa than at the control temperature. Our results show in an unprecedented way that, in a global warming scenario, CSD species may not necessarily be better protected against the masculinizing effect of elevated temperature than PSD species, and reveal genotype-by-temperature interactions in male sex determination and spermatogenesis.


Asunto(s)
Procesos de Determinación del Sexo , Pez Cebra , Animales , Cromosomas , Femenino , Masculino , Razón de Masculinidad , Temperatura , Pez Cebra/genética
12.
Environ Res ; 186: 109601, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371278

RESUMEN

Accumulating evidence shows that environmental changes can affect population sex ratios through epigenetic regulation of gene expression in species where sex depends on both genetic and environmental cues. Sometimes, altered sex ratios persist in the next generation even when the environmental cue is no longer present (a multigenerational effect). However, evidence of transgenerational effects (i.e., beyond the first non-exposed generation), which tend to be paternally transmitted, is scarce and a matter of debate. Here, we used the AB strain of zebrafish, where sex depends on both genetic and environmental influences, to study possible multi- (to the F1) and transgenerational (to the F2) effects of elevated temperature during the critical period of sex differentiation. From eight initial different families, five were selected in order to capture sufficient variation between the sex ratio of the control group (28 °C) and the group exposed to elevated (35 °C) temperature only at the parental (P) generation. Results showed a consistent increase in the proportion of males in the P generation in all five families as a result of heat treatment. Sex ratios were then determined in the F1 and F2 offspring derived from both above groups, which were all raised at 28 °C. A persisting male-skewed sex ratio in the 35°C-derived, unexposed offspring of the F1 generation was observed in three families, denoting family-dependent multigenerational effects. However, no transgenerational effects were observed in the F2 generation of any family. DNA methylation was also assessed in the testis of P, F1 and F2 males derived from exposed and non-exposed fathers and grandfathers. DNA methylation was significantly decreased only in the testis of the 35°C-derived males in the F1 generation but not of the F2 generation and, surprisingly, neither in the 35°C-exposed males of the P generation. Taken together, our results show great interfamily variation, not only in sex ratio response to elevated temperature, but also on its multigenerational effects, denoting a strong influence of genetics. Alterations in the testicular epigenome in F1 males calls for attention to possible, previously unnoticed, effects of temperature in the unexposed offspring of heat-exposed parents in a global warming scenario.


Asunto(s)
Razón de Masculinidad , Pez Cebra , Animales , Epigénesis Genética , Epigenoma , Masculino , Temperatura , Testículo , Pez Cebra/genética
13.
Front Genet ; 10: 857, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616469

RESUMEN

Epigenetics integrates genomic and environmental information to produce a given phenotype. Here, the model of Conserved Epigenetic Regulation of Sex (CERS) is discussed. This model is based on our knowledge on genes involved in sexual development and on epigenetic regulation of gene expression activation and silencing. This model was recently postulated to be applied to the sexual development of fish, and it states that epigenetic and gene expression patterns are more associated with the development of a particular gonadal phenotype, e.g., testis differentiation, rather than with the intrinsic or extrinsic causes that lead to the development of this phenotype. This requires the existence of genes with different epigenetic modifications, for example, changes in DNA methylation levels associated with the development of a particular sex. Focusing on DNA methylation, the identification of CpGs, the methylation of which is linked to sex, constitutes the basis for the identification of Essential Epigenetic Marks (EEM). EEMs are defined as the number and identity of informative epigenetic marks that are strictly necessary, albeit perhaps not sufficient, to bring about a specific, measurable, phenotype of interest. Here, we provide a summary of the genes where DNA methylation has been investigated so far, focusing on fish. We found that cyp19a1a and dmrt1, two key genes for ovary and testis development, respectively, consistently show an inverse relationship between their DNA methylation and expression levels, thus following CERS predictions. However, in foxl2a, a pro-female gene, and amh, a pro-male gene, such relationship is not clear. The available data of other genes related to sexual development such as sox9, gsdf, and amhr2 are also discussed. Next, we discuss the use of CERS to make testable predictions of how sex is epigenetically regulated and to better understand sexual development, as well as the use of EEMs as tools for the diagnosis and prognosis of sex. We argue that CERS can aid in focusing research on the epigenetic regulation of sexual development not only in fish but also in vertebrates in general, particularly in reptiles with temperature sex-determination, and can be the basis for possible practical applications including sex control in aquaculture and also in conservation biology.

14.
J Exp Zool B Mol Dev Evol ; 332(3-4): 55-68, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30945804

RESUMEN

Sex is remarkably plastic in fish and can be easily influenced by environmental cues, in which temperature has been the most studied abiotic factor. However, it has been shown that elevated population densities can increase the number of males in several species but little is known about the underlying molecular mechanisms and whether general patterns exist. Here, we studied the long-term effects of population density on the gene expression program in zebrafish gonads. The ovarian transcriptome of females exposed to high versus low population densities contained 4,634 differentially expressed genes. Among them, a set of promale genes (amh, sypc3, spata6, and sox3) were upregulated in the high-population density group. Next, we compared the transcriptomes of ovaries of female zebrafish resistant to the masculinizing effects of either high density or elevated temperature. Results showed a set of 131 and 242 common upregulated and downregulated genes, respectively, including the upregulation of known male-related genes (e.g., amh and sycp3) but also genes involved in other functions (e.g., faima, ccm21, and ankrd6b) and a downregulation of cyp19a1a together with other genes (e.g., lgals9l1 and ubxn2a). We identified the common Gene Ontology terms involved in the reproduction and sexual development that were consistently affected in both environmental factors. These results show that regardless of the environmental perturbation there are common genes and cellular functions involved in the resistance to masculinization. These altered gene-expression profiles can be used as markers indicative of previous exposure to environmental stress independent of conspicuous alterations in sex ratios or gonadal morphology.


Asunto(s)
Ambiente , Estrés Fisiológico , Transcriptoma , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Epigénesis Genética , Femenino , Ovario/metabolismo , Diferenciación Sexual , Proteínas de Pez Cebra/genética
15.
Epigenetics Chromatin ; 10(1): 59, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29216900

RESUMEN

BACKGROUND: The role of epigenetic modifications such as DNA methylation during vertebrate sexual development is far from being clear. Using the zebrafish model, we tested the effects of one of the most common DNA methyltransferase (dnmt) inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), which is approved for the treatment of acute myeloid leukaemia and is under active investigation for the treatment of solid tumours. Several dose-response experiments were carried out during two periods, including not only the very first days of development (0-6 days post-fertilization, dpf), as done in previous studies, but also, and as a novelty, the period of gonadal development (10-30 dpf). RESULTS: Early treatment with 5-aza-dC altered embryonic development, delayed hatching and increased teratology and mortality, as expected. The most striking result, however, was an increase in the number of females, suggesting that alterations induced by 5-aza-dC treatment can affect sexual development as well. Results were confirmed when treatment coincided with gonadal development. In addition, we also found that the adult gonadal transcriptome of 5-aza-dC-exposed females included significant changes in the expression of key reproduction-related genes (e.g. cyp11a1, esr2b and figla), and that several pro-female-related pathways such as the Fanconi anaemia or the Wnt signalling pathways were downregulated. Furthermore, an overall inhibition of genes implicated in epigenetic regulatory mechanisms (e.g. dnmt1, dicer, cbx4) was also observed. CONCLUSIONS: Taken together, our results indicate that treatment with a DNA methylation inhibitor can also alter the sexual development in zebrafish, with permanent alterations of the adult gonadal transcriptome, at least in females. Our results show the importance of DNA methylation for proper control of sexual development, open new avenues for the potential control of sex ratios in fish (aquaculture, population control) and call attention to possibly hidden long-term effects of dnmt therapy when used, for example, in the treatment of prepuberal children affected by some types of cancer.


Asunto(s)
Metilasas de Modificación del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Feminización/inducido químicamente , Ovario/efectos de los fármacos , Pez Cebra/embriología , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Decitabina , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ovario/metabolismo , Razón de Masculinidad , Transcriptoma
17.
J Exp Biol ; 220(Pt 6): 1056-1064, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28082617

RESUMEN

The zebrafish (Danio rerio) has become a well-established experimental model in many research fields but the loss of the primary sex-determining region during the process of domestication renders laboratory strains of zebrafish susceptible to the effects of environmental factors on sex ratios. Further, an essential husbandry aspect - the optimal rearing density to avoid stress-induced masculinization - is not known. We carried out two experiments: the first focusing on the effects of density on survival, growth and sex ratio by rearing zebrafish at different initial densities (9, 19, 37 and 74 fish per litre) for 3 months (6-90 days post-fertilization, dpf), and the second focusing on the effects of cortisol during the sex differentiation period (15-45 dpf) for zebrafish reared at low density. The results showed an increase in the number of males in groups subjected to the two highest initial rearing densities; we also observed a reduction of survival and growth in a density-dependent manner. Furthermore, zebrafish treated with cortisol during the sex differentiation period showed a complete masculinization of the population; treatment with the cortisol synthesis inhibitor metyrapone negated the effects of exogenous cortisol. Our results indicate that the process of sex differentiation in domesticated zebrafish can be perturbed by elevated stocking density and that this effect is likely to be mediated by an increase in cortisol through the stress response. However, the underlying mechanism needs further study.


Asunto(s)
Estrés Fisiológico , Pez Cebra/crecimiento & desarrollo , Animales , Aglomeración , Femenino , Gónadas/fisiología , Hidrocortisona/metabolismo , Masculino , Densidad de Población , Diferenciación Sexual , Razón de Masculinidad , Pez Cebra/fisiología
18.
Proc Natl Acad Sci U S A ; 114(6): E941-E950, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115725

RESUMEN

Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.


Asunto(s)
Gónadas/metabolismo , Calor , Diferenciación Sexual/genética , Transcriptoma , Pez Cebra/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Gónadas/embriología , Gónadas/crecimiento & desarrollo , Masculino , Modelos Animales , Razón de Masculinidad , Temperatura , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Proteínas de Pez Cebra/genética
19.
BMC Genomics ; 16: 973, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581195

RESUMEN

BACKGROUND: Controlling sex ratios is essential for the aquaculture industry, especially in those species with sex dimorphism for relevant productive traits, hence the importance of knowing how the sexual phenotype is established in fish. Turbot, a very important fish for the aquaculture industry in Europe, shows one of the largest sexual growth dimorphisms amongst marine cultured species, being all-female stocks a desirable goal for the industry. Although important knowledge has been achieved on the genetic basis of sex determination (SD) in this species, the master SD gene remains unknown and precise information on gene expression at the critical stage of sex differentiation is lacking. In the present work, we examined the expression profiles of 29 relevant genes related to sex differentiation, from 60 up to 135 days post fertilization (dpf), when gonads are differentiating. We also considered the influence of three temperature regimes on sex differentiation. RESULTS: The first sex-related differences in molecular markers could be observed at 90 days post fertilization (dpf) and so we have called that time the onset of sex differentiation. Three genes were the first to show differential expression between males and females and also allowed us to sex turbot accurately at the onset of sex differentiation (90 dpf): cyp19a1a, amh and vasa. The expression of genes related to primordial germ cells (vasa, gsdf, tdrd1) started to increase between 75-90 dpf and vasa and tdrd1 later presented higher expression in females (90-105 dpf). Two genes placed on the SD region of turbot (sox2, fxr1) did not show any expression pattern suggestive of a sex determining function. We also detected changes in the expression levels of several genes (ctnnb1, cyp11a, dmrt2 or sox6) depending on culture temperature. CONCLUSION: Our results enabled us to identify the first sex-associated genetic cues (cyp19a1a, vasa and amh) at the initial stages of gonad development in turbot (90 dpf) and to accurately sex turbot at this age, establishing the correspondence between gene expression profiles and histological sex. Furthermore, we profiled several genes involved in sex differentiation and found specific temperature effects on their expression.


Asunto(s)
Peces Planos/crecimiento & desarrollo , Peces Planos/genética , Perfilación de la Expresión Génica , Diferenciación Sexual/genética , Animales , Femenino , Fertilización , Peces Planos/fisiología , Redes Reguladoras de Genes , Masculino , Sitios de Carácter Cuantitativo/genética , Temperatura
20.
Front Genet ; 5: 340, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25324858

RESUMEN

Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...