Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 414: 113512, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34358572

RESUMEN

Folic acid has been reported to exert antidepressant effects, but its ability to abrogate the depressive-like behavior and signaling pathways alterations elicited by an inflammatory model of depression remains to be established. This study examined: a) the efficacy of folic acid in a mouse model of depression induced by tumor necrosis factor (TNF-α); b) whether the administration of subthreshold doses of folic acid and antidepressants (fluoxetine, imipramine, and bupropion), MK-801, or 7-nitroindazole cause antidepressant-like effects; c) the effects of TNF-α and/or folic acid on hippocampal p38MAPK, Akt, ERK, and JNK phosphorylation. Folic acid reduced the immobility time in the tail suspension test (TST) in control mice (10-50 mg/kg, p.o) and abolished the depressive-like behavior elicited by TNF-α (0.001 fg/site, i.c.v.) in this test (1-50 mg/kg, p.o). Coadministration of subthreshold doses of folic acid (1 mg/kg, p.o.) and fluoxetine, imipramine, bupropion, MK-801, or 7-nitroindazole produced an antidepressant-like effect in mice exposed or not to TNF-α. TNF-α-treated mice presented increased p38MAPK phosphorylation and decreased Akt phosphorylation, and the later effect was prevented by folic acid (10 mg/kg, p.o.). Additionally, ERK1 phosphorylation was increased in mice treated with TNF-α + folic acid (1 mg/kg), but no effects on ERK2 or JNK1/2/3 phosphorylation were found in any group. The results indicate the efficacy of folic acid to counteract the depressive-like behavior induced by a pro-inflammatory cytokine, an effect that might be associated with the activation of monoaminergic systems, inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) synthesis, as well as Akt modulation.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ácido Fólico/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Complejo Vitamínico B/farmacología , Animales , Antidepresivos/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Ácido Fólico/administración & dosificación , Ratones , Complejo Vitamínico B/administración & dosificación
2.
Naunyn Schmiedebergs Arch Pharmacol ; 391(2): 169-176, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222646

RESUMEN

Considering the involvement of the opioid system in major depressive disorder (MDD), mainly concerning refractory MDD, and the evidence that ascorbic acid may exert a beneficial effect for the treatment of this disorder, this study investigated the involvement of the opioid system in the antidepressant-like effect of ascorbic acid in the tail suspension test (TST). Treatment of Swiss mice with the non-selective opioid receptor antagonist naloxone (1 mg/kg, i.p.) prevented the reduced immobility time caused by ascorbic acid (1 mg/kg, p.o.) in the TST. Additionally, administration of the selective µ1-opioid receptor antagonist, naloxonazine (10 mg/kg, i.p.), also abolished the antidepressant-like action of the same dose of ascorbic acid in the TST. We also investigated the possible relationship between the opioid system and NMDA receptors in the mechanism of action of ascorbic acid or ketamine (0.1 mg/kg, i.p.) in the TST. Treatment of mice with naloxone (1 mg/kg, i.p.) blocked the synergistic antidepressant-like effect of ascorbic acid (0.1 mg/kg. p.o.) and MK-801 (0.001 mg/kg, p.o., a non-competitive NMDA receptor antagonist) in the TST. Combined administration of ketamine and MK-801 induced a synergistic antidepressant-like action, and naloxone partially abolished this effect. Our results indicate that the antidepressant-like effect of ascorbic acid in the TST appears to be dependent on the activation of the opioid system, especially µ1-opioid receptors, which might be an indirect consequence of NMDA receptor inhibition elicited by ascorbic acid administration.


Asunto(s)
Antidepresivos/uso terapéutico , Ácido Ascórbico/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antagonistas de Narcóticos/farmacología , Receptores Opioides , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Antidepresivos/farmacología , Ácido Ascórbico/farmacología , Trastorno Depresivo Mayor/psicología , Femenino , Suspensión Trasera/métodos , Suspensión Trasera/psicología , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Receptores Opioides/agonistas , Receptores Opioides/metabolismo
3.
Pharmacol Biochem Behav ; 150-151: 108-114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27743829

RESUMEN

Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points.


Asunto(s)
Agmatina/farmacología , Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Ketamina/farmacología , Estrés Psicológico/complicaciones , Animales , Femenino , Suspensión Trasera , Ratones , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/química
4.
Pharmacol Rep ; 68(5): 996-1001, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27423525

RESUMEN

BACKGROUND: It has been suggested that dysregulation of γ-aminobutyric acid (GABA)-mediated neurotransmission is involved in the etiology of major depressive disorder and in the action of the fast-acting antidepressant ketamine. Considering that recent evidence has suggested that ascorbic acid may exert an antidepressant-like effect through mechanisms similar to ketamine, this study evaluated the involvement of GABAA and GABAB receptors in the antidepressant-like effect of ascorbic acid, comparing the results with those obtained with ketamine. METHODS: To investigate the involvement of GABAA in the antidepressant-like effect of ascorbic acid and ketamine in the tail suspension test (TST), mice were treated with a sub-effective dose of ascorbic acid (0.1mg/kg, po), ketamine (0.1mg/kg, ip) or vehicle and 30minutes later, a sub-effective dose of muscimol (0.1mg/kg, ip, GABAA receptor agonist) or vehicle was administered. In another set of experiments, mice were treated with ascorbic acid (1mg/kg, po, active dose in the TST) or vehicle and 30minutes later, baclofen (1mg/kg, ip, GABAB receptor agonist) was administered. A similar experimental protocol was performed with ketamine (1mg/kg, ip). RESULTS: The administration of muscimol combined with ascorbic acid or ketamine produced a synergistic antidepressant-like effect in the TST. Moreover, the antidepressant-like effects of ascorbic acid and ketamine were abolished by baclofen. There was no alteration in spontaneous locomotion in any experimental group. CONCLUSIONS: Results indicate that the anti-immobility effect of ascorbic acid and ketamine in TST may involve an activation of GABAA receptors and a possible inhibition of GABAB receptors.


Asunto(s)
Antidepresivos/farmacología , Ácido Ascórbico/farmacología , Ketamina/farmacología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Modelos Animales de Enfermedad , Femenino , Suspensión Trasera/métodos , Ratones , Actividad Motora/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
5.
Eur Neuropsychopharmacol ; 26(6): 959-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27061850

RESUMEN

The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5µg/site, i.c.v.), BDNF antibody (1µg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1µg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3ß inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3ß inhibitor, 0.01µg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3ß, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses.


Asunto(s)
Agmatina/farmacología , Antidepresivos/farmacología , Receptores AMPA/agonistas , Serina-Treonina Quinasas TOR/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Suspensión Trasera , Ratones , Actividad Motora/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinoxalinas/farmacología , Receptor trkB/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
6.
J Neural Transm (Vienna) ; 123(3): 339-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747027

RESUMEN

Stress and excessive glutamatergic neurotransmission have been implicated in the pathophysiology of depression. Therefore, this study was aimed at investigating the influence of zinc on depressive-like behavior induced by chronic unpredictable stress (CUS), on alterations in glutamate-induced toxicity and immunocontent of proteins involved in the control of glutamatergic neurotransmission in the hippocampus of mice. Mice were subjected to CUS procedure for 14 days. From the 8th to the 14th day, mice received zinc chloride (ZnCl2) (10 mg/kg) or fluoxetine (10 mg/kg, positive control) once a day by oral route. CUS caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test (TST), which was prevented by treatment with ZnCl2 or fluoxetine. Ex vivo exposure of hippocampal slices to glutamate (10 mM) resulted in a significant decrease on cell viability; however, neither CUS procedure nor drug treatments altered this reduction. No alterations in the immunocontents of GLT-1 and GFAP or p-Akt were observed in any experimental group. The ratio of p-Akt/AKT was also not altered in any group. However, Akt immunocontent was increased in stressed mice and in animals treated with ZnCl2 (stressed or non-stressed mice) and EAAC1 immunocontent was increased in stressed mice treated with ZnCl2, fluoxetine or vehicle and in non-stressed mice treated with ZnCl2 and fluoxetine. These findings indicate a robust effect of zinc in reversing behavioral alteration induced by CUS in mice, through a possible modulation of the glutamatergic neurotransmission, extending literature data regarding the mechanisms underlying its antidepressant-like action.


Asunto(s)
Antidepresivos/farmacología , Cloruros/farmacología , Depresión , Hipocampo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Compuestos de Zinc/farmacología , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Femenino , Fluoxetina/farmacología , Glutamina/metabolismo , Hipocampo/metabolismo , Ratones , Estrés Psicológico/psicología
7.
Artículo en Inglés | MEDLINE | ID: mdl-25600102

RESUMEN

Considering that intracellular signaling pathways that modulate brain BDNF are implicated in antidepressant responses, this study investigated whether signaling pathway inhibitors upstream to BDNF might influence the antidepressant-like effect of zinc, a metal that has been shown to display antidepressant properties. To this end, the influence of i.c.v. administration of H-89 (1µg/site, PKA inhibitor), KN-62 (1µg/site, CAMKII inhibitor), chelerythrine (1µg/site, PKC inhibitor), PD98059 (5µg/site, MEK1/2 inhibitor), U0126 (5µg/site, MEK1/2 inhibitor), LY294002 (10nmol/site, PI3K inhibitor) on the reduction of immobility time in the tail suspension test (TST) elicited by ZnCl2 (10mg/kg, p.o.) was investigated. Moreover, the effect of the combination of sub-effective doses of ZnCl2 (1mg/kg, p.o.) and AR-A014418 (0.001µg/site, GSK-3ß inhibitor) was evaluated. The occurrence of changes in CREB phosphorylation and BDNF immunocontent in the hippocampus and prefrontal cortex of mice following ZnCl2 treatment was also investigated. The anti-immobility effect of ZnCl2 in the TST was prevented by treatment with PKA, PKC, CAMKII, MEK1/2 or PI3K inhibitors. Furthermore, ZnCl2 in combination with AR-A014418 caused a synergistic anti-immobility effect in the TST. None of the treatments altered locomotor activity of mice. ZnCl2 treatment caused no alteration in CREB phosphorylation and BDNF immunocontent. The results extend literature data regarding the mechanisms underlying the antidepressant-like action of zinc by indicating that its antidepressant-like effect may be dependent on the activation of PKA, CAMKII, PKC, ERK, and PI3K/GSK-3ß pathways. However, zinc is not able to acutely increase BDNF in the hippocampus and prefrontal cortex.


Asunto(s)
Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cloruros/uso terapéutico , Depresión/tratamiento farmacológico , Transducción de Señal/fisiología , Compuestos de Zinc/uso terapéutico , Animales , Antidepresivos/farmacología , Proteína de Unión a CREB/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cloruros/farmacología , Depresión/patología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Conducta Exploratoria/efectos de los fármacos , Femenino , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estadísticas no Paramétricas , Compuestos de Zinc/farmacología
8.
Pharmacol Biochem Behav ; 127: 1-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25316305

RESUMEN

The objective of this study was to investigate the effects of folic acid on depressive-like behavior induced by chronic administration of corticosterone in mice. Corticosterone (20mg/kg, p.o.) was administered once a day for 21days. Folic acid (30mg/kg, p.o.) or fluoxetine (10mg/kg, positive control, p.o.) was administered immediately after corticosterone injection during the last 7days of corticosterone treatment. On the 22nd day, animals were submitted to tail suspension test, open-field test and splash test. Corticosterone treatment caused a depressive-like behavior, evidenced by increased immobility time in the tail suspension test and decreased time in which mice spent grooming in the splash test. Repeated folic acid or fluoxetine administration significantly abolished corticosterone-induced depressive-like behavior. Chronic administration of corticosterone decreased levels of serum corticosterone in mice. Neither folic acid, nor fluoxetine treatment reversed this impairment. These findings indicate a robust effect of folic acid in reversing behavioral alterations induced by corticosterone model of depression in mice, suggesting that this vitamin may be an alternative approach for the management of depressive symptoms.


Asunto(s)
Corticosterona/administración & dosificación , Corticosterona/efectos adversos , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Ácido Fólico/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Depresión/psicología , Esquema de Medicación , Femenino , Inmovilización/psicología , Ratones , Resultado del Tratamiento
9.
Pharmacol Biochem Behav ; 127: 7-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25316306

RESUMEN

Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS.


Asunto(s)
Guanosina/uso terapéutico , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Natación/psicología , Enfermedad Aguda , Animales , Femenino , Guanosina/farmacología , Hipocampo/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Restricción Física , Estrés Psicológico/psicología
10.
J Psychiatr Res ; 58: 137-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25161097

RESUMEN

Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3ß (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus.


Asunto(s)
Agmatina/farmacología , Antidepresivos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Análisis de Varianza , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Suspensión Trasera , Pérdida de Tono Postural/efectos de los fármacos , Ratones
11.
Artículo en Inglés | MEDLINE | ID: mdl-24370459

RESUMEN

Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus.


Asunto(s)
Agmatina/farmacología , Agmatina/uso terapéutico , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Hipocampo/metabolismo , Restricción Física/psicología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/metabolismo , Femenino , Hipocampo/efectos de los fármacos , Pérdida de Tono Postural/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...