Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 27(2): 250-256, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28017611

RESUMEN

Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/crecimiento & desarrollo , Tiorredoxinas/antagonistas & inhibidores , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Bacterias Fijadoras de Nitrógeno/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Sinorhizobium meliloti/efectos de los fármacos , Simbiosis
2.
Biochim Biophys Acta ; 1850(8): 1469-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25433163

RESUMEN

BACKGROUND: Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW: Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS: Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE: The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Fijación del Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis/fisiología , Fabaceae/citología , Fabaceae/metabolismo , Fabaceae/microbiología , Interacciones Huésped-Patógeno , Oxidación-Reducción , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiología
3.
Genet Mol Biol ; 35(4 (suppl)): 1011-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23412747

RESUMEN

When plants are exposed to stressful environmental conditions, the production of Reactive Oxygen Species (ROS) increases and can cause significant damage to the cells. Antioxidant defenses, which can detoxify ROS, are present in plants. A major hydrogen peroxide detoxifying system in plant cells is the ascorbate-glutathione cycle, in which, ascorbate peroxidase (APX) enzymes play a key role catalyzing the conversion of H(2)O(2) into H(2)O, using ascorbate as a specific electron donor. Different APX isoforms are present in distinct subcellular compartments, such as chloroplasts, mitochondria, peroxisome, and cytosol. The expression of APX genes is regulated in response to biotic and abiotic stresses as well as during plant development. The APX responses are directly involved in the protection of plant cells against adverse environmental conditions. Furthermore, mutant plants APX genes showed alterations in growth, physiology and antioxidant metabolism revealing those enzymes involvement in the normal plant development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...