Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(23): eabm6340, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675414

RESUMEN

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.

2.
Methods Mol Biol ; 2471: 83-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175592

RESUMEN

The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.


Asunto(s)
Investigación con Células Madre , Factores de Transcripción , Diferenciación Celular , Biología Computacional , Redes Reguladoras de Genes , Transducción de Señal
3.
Stem Cells Transl Med ; 10(2): 230-238, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33125830

RESUMEN

Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single-cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single-cell RNA-sequencing (scRNA-seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA-seq data for predicting cell conversion transcription factors (TFs) for user-specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.


Asunto(s)
RNA-Seq , ARN , Análisis de la Célula Individual , ARN/genética , Medicina Regenerativa , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA