Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1866(12): 130238, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36044955

RESUMEN

The Hippo pathway plays central roles in relaying mechanical signals during development and tumorigenesis, but how the proteostasis of the Hippo kinase MST2 is regulated remains unknown. Here, we found that chemical inhibition of proteasomal proteolysis resulted in increased levels of MST2 in human breast epithelial cells. MST2 binds SCFßTrCP E3 ubiquitin ligase and silencing ßTrCP resulted in MST2 accumulation. Site-directed mutagenesis combined with computational molecular dynamics studies revealed that ßTrCP binds MST2 via a non-canonical degradation motif. Additionally, stiffer extracellular matrix, as well as hyperactivation of integrins resulted in enhanced MST2 degradation mediated by integrin-linked kinase (ILK) and actomyosin stress fibers. Our study uncovers the underlying biochemical mechanisms controlling MST2 degradation and underscores how alterations in the microenvironment rigidity regulate the proteostasis of a central Hippo pathway component.


Asunto(s)
Serina-Treonina Quinasa 3 , Ubiquitina-Proteína Ligasas , Proteínas con Repetición de beta-Transducina , Humanos , Proteínas con Repetición de beta-Transducina/metabolismo , Matriz Extracelular/metabolismo , Fosforilación , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Serina-Treonina Quinasa 3/metabolismo
2.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551296

RESUMEN

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , COVID-19 , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Microscopía Electrónica , Simulación de Dinámica Molecular , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , ARN Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
3.
BMC Bioinformatics ; 22(1): 607, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930115

RESUMEN

BACKGROUND: Biomolecular interactions that modulate biological processes occur mainly in cavities throughout the surface of biomolecular structures. In the data science era, structural biology has benefited from the increasing availability of biostructural data due to advances in structural determination and computational methods. In this scenario, data-intensive cavity analysis demands efficient scripting routines built on easily manipulated data structures. To fulfill this need, we developed pyKVFinder, a Python package to detect and characterize cavities in biomolecular structures for data science and automated pipelines. RESULTS: pyKVFinder efficiently detects cavities in biomolecular structures and computes their volume, area, depth and hydropathy, storing these cavity properties in NumPy arrays. Benefited from Python ecosystem interoperability and data structures, pyKVFinder can be integrated with third-party scientific packages and libraries for mathematical calculations, machine learning and 3D visualization in automated workflows. As proof of pyKVFinder's capabilities, we successfully identified and compared ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with pyKVFinder, showing its integrability with data science packages such as matplotlib, NGL Viewer, SciPy and Jupyter notebook. CONCLUSIONS: We introduce an efficient, highly versatile and easily integrable software for detecting and characterizing biomolecular cavities in data science applications and automated protocols. pyKVFinder facilitates biostructural data analysis with scripting routines in the Python ecosystem and can be building blocks for data science and drug design applications.


Asunto(s)
COVID-19 , Ciencia de los Datos , Análisis de Datos , Ecosistema , Humanos , SARS-CoV-2
4.
Clin Exp Pharmacol Physiol ; 47(5): 798-808, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31909493

RESUMEN

The present investigation aimed to characterize the effect of a short-time treatment with a new thiazolidinedione (TZD) derivative, GQ-130, on metabolic alterations in rats fed a high-fat diet (HFD). We investigated whether metabolic alterations induced by GQ-130 were mediated though a mechanism that involves PPARß/δ transactivation. Potential binding and transactivation of PPARα, PPARß/δ or PPARγ by GQ-130 were examined through cell transactivation, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence quenching assays and thermal shift assay. For in vivo experiments, male 8-week-old Wistar rats were divided into three groups fed for 6 weeks with: (a) a standard rat chow (14% fat) (control group), (b) a HFD (57.8% fat) alone (HFD group), or (c) a HFD associated with an oral treatment with GQ-130 (10 mg/kg/d) during the last week (HFD-GQ group). In 293T cells, unlike rosiglitazone, GQ-130 did not cause significant transactivation of PPARγ but was able to activate PPARß/δ by 153.9 folds in comparison with control values (DMSO). Surprisingly, ANS fluorescence quenching assay reveals that GQ-130 does not bind directly to PPARß/δ binding site, a finding that was further corroborated by thermal shift assay which evaluates the thermal stability of PPARß/δ in the presence of GQ-130. Compared to the control group, rats of the HFD group showed obesity, increased systolic blood pressure (SBP), insulin resistance, impaired glucose intolerance, hyperglycaemia, and dyslipidaemia. GQ-130 treatment abolished the increased SBP and improved all metabolic dysfunctions observed in the HFD group. Oral treatment with GQ-130 was effective in improving HFD-induced metabolic alterations probably through a mechanism that involves PPARß/δ activation.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , PPAR delta/agonistas , PPAR-beta/agonistas , Tiazolidinedionas/farmacología , Animales , Biomarcadores/sangre , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Resistencia a la Insulina , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/fisiopatología , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/genética , PPAR-beta/metabolismo , Ratas Wistar , Transducción de Señal , Factores de Tiempo
5.
Cancer Chemother Pharmacol ; 84(2): 287-298, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31011814

RESUMEN

PURPOSE: Anticancer-drug efficacy seems to involve the direct interaction with host immune cells. Although topoisomerase I (Top I) inhibitors have been suggested to block LPS-evoked inflammation, the interaction between these drugs and toll-like receptor 4 (TLR4) is unaddressed. METHODS: SN-38, the active metabolite of the Top I inhibitor irinotecan, and TLR4 interaction was assessed using the in vitro luciferase nuclear factor-κB reporter assay, neutrophil migration to murine air-pouch, in silico simulation, and the thermal shift assay (TSA). Topotecan was used as a positive anti-inflammatory control. RESULTS: Non-cytotoxic concentrations of SN-38 attenuated LPS (a TLR4 agonist)-driven cell activation without affecting peptidoglycan (a TLR2 agonist)-activating response. Similarly, topotecan also prevented LPS-induced inflammation. Conversely, increasing concentrations of LPS reversed the SN-38 inhibitory effect. In addition, SN-38 abrogated LPS-dependent neutrophil migration and reduced TNF-α, IL-6, and keratinocyte chemoattractant levels in the air-pouch model, but failed to inhibit zymosan (a TLR2 agonist)-induced cell migration. A two-step molecular docking analysis indicated two potential binding sites for the SN-38 in the MD-2/TLR4 complex, the hydrophobic MD-2 pocket (binding energy of - 8.1 kcal/mol) and the rim of the same molecule (- 6.9 kcal/mol). The topotecan also bound to the MD-2 pocket. In addition, not only the lactone forms, but also the carboxylate conformations of both Top I inhibitors interacted with the MD-2 molecule. Furthermore, the TSA suggested the interaction of SN-38 with MD-2. CONCLUSIONS: Therefore, SN-38 inhibits acute inflammation by blocking LPS-driven TLR4 signaling. This mechanism seems to be shared by other Top I inhibitors.


Asunto(s)
Inflamación/tratamiento farmacológico , Irinotecán/uso terapéutico , Receptor Toll-Like 4/genética , Inhibidores de Topoisomerasa I/uso terapéutico , Animales , Humanos , Irinotecán/farmacología , Masculino , Ratones , Inhibidores de Topoisomerasa I/farmacología
6.
Fundam Clin Pharmacol ; 33(6): 612-620, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31012153

RESUMEN

A group of nitro compounds contains a benzene ring in a short aliphatic chain with the NO2 group, property that supposedly favors its vasodilator profile. In this study, we evaluated in isolated rat aorta the effects of 1-nitro-2-propylbenzene (NPB), a nitro compound containing the NO2 in the aromatic ring. In aorta precontracted with KCl, NPB (1-3000 µm) induced full endothelium-independent relaxation. In endothelium-intact preparations, phenylephrine-induced contractions were fully relaxed by NPB, effect unaltered by N(ω)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In the concentration range of 30-300 µm, NPB slightly but significantly potentiated the phenylephrine-induced contraction. Such potentiation was unaltered by the thromboxane-prostanoid receptor antagonist seratrodast, but was abolished by endothelium removal or by preincubation of endothelium-intact preparations with L-NAME, ODQ or by ruthenium red and HC-030031, blockers of subtype 1 of ankyrin transient receptor potential (TRPA1 ) channels. Verapamil exacerbated the potentiating effect of NPB. The potentiating effect was undetectable in preparations precontracted by 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U-46619). Relaxation was reduced by ruthenium red while it was enhanced by HC-030031. In conclusion, NPB has vasodilator properties but with a mechanism of action distinct from its analogues. Contrary to other nitro compounds, its relaxing effects did not involve recruitment of the guanylyl cyclase pathway. NPB has also endothelium-dependent potentiating properties on phenylephrine-induced contractions, a phenomenon that putatively required a role of endothelial TRPA1 channels. The present findings reinforce the notion that the functional group NO2 in the aliphatic chain of these nitro compounds determines favorably their vasodilator properties.


Asunto(s)
Aorta/efectos de los fármacos , Endotelio Vascular/fisiología , Nitrocompuestos/farmacología , Vasodilatadores/farmacología , Animales , Aorta/fisiología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Ratas , Ratas Wistar
7.
Adv Physiol Educ ; 42(4): 655-660, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387699

RESUMEN

Undergraduate biomedical students often have difficulties in understanding basic concepts of respiratory physiology, particularly respiratory mechanics. In this study, we report the use of electrical impedance tomography (EIT) to improve and consolidate the knowledge about physiological aspects of normal regional distribution of ventilation in humans. Initially, we assessed the previous knowledge of a group of medical students ( n = 39) about regional differences in lung ventilation. Thereafter, we recorded the regional distribution of ventilation through surface electrodes on a healthy volunteer adopting four different decubitus positions: supine, prone, and right and left lateral. The recordings clearly showed greater pulmonary ventilation in the dependent lung, mainly in the lateral decubitus. Considering the differences in pulmonary ventilation between right and left lateral decubitus, only 33% of students were able to notice it correctly beforehand. This percentage increased to 84 and 100%, respectively ( P < 0.01), after the results of the ventilation measurements obtained with EIT were examined and discussed. A self-assessment questionnaire showed that students considered the practical activity as an important tool to assist in the understanding of the basic concepts of respiratory mechanics. Experimental demonstration of the physiological variations of regional lung ventilation in volunteers by using EIT is feasible, effective, and stimulating for undergraduate medical students. Therefore, this practical activity may help faculty and students to overcome the challenges in the field of respiratory physiology learning.


Asunto(s)
Educación Médica/métodos , Impedancia Eléctrica , Fisiología/educación , Ventilación Pulmonar/fisiología , Estudiantes de Medicina , Tomografía/métodos , Comprensión/fisiología , Femenino , Humanos , Masculino , Adulto Joven
8.
Eur J Pharmacol ; 830: 105-114, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29709439

RESUMEN

Compounds containing a nitro group may reveal vasodilator properties. Several nitro compounds have a NO2 group in a short aliphatic chain connected to an aromatic group. In this study, we evaluated in rat aorta the effects of two nitro compounds, with emphasis on a putative recruitment of the soluble guanylate cyclase (sGC) pathway to induce vasodilation. Isolated aortic rings were obtained from male Wistar rats to compare the effects induced by 2-nitro-1-phenylethanone (NPeth) or 2-nitro-2-phenyl-propane-1,3-diol (NPprop). In aortic preparations contracted with phenylephrine or KCl, NPeth and NPprop induced vasorelaxant effects that did not depend on the integrity of vascular endothelium. NPeth had a lesser vasorelaxant efficacy than NPprop and only the NPprop effects were inhibited by pretreatment with the sGC inhibitors, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or methylene blue. In an ODQ-preventable manner, NPprop inhibited the contractile component of the phenylephrine-induced response mediated by intracellular Ca2+ release or by extracellular Ca2+ recruitment through receptor- or voltage-operated Ca2+ channels. In contrast, NPprop was inert against the transient contraction induced by caffeine in Ca2+-free medium. In an ODQ-dependent manner, NPprop inhibited the contraction induced by the protein kinase C activator phorbol 12,13-dibutyrate or by the tyrosine phosphatase inhibitor sodium orthovanadate. In silico docking analysis of a sGC homologous protein revealed preferential site for NPprop. In conclusion, the nitro compounds NPeth and NPprop induced vasorelaxation in rat aortic rings. Aliphatic chain substituents selectively interfered in the ability of these compounds to induce vasorelaxant effects, and only NPprop relaxed aortic rings via a sGC pathway.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Nitrocompuestos/farmacología , Propano/análogos & derivados , Vasodilatadores/farmacología , Animales , Aorta Torácica/fisiología , Guanilato Ciclasa/fisiología , Masculino , Propano/farmacología , Ratas Wistar
9.
Artículo en Inglés | MEDLINE | ID: mdl-29449830

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of a nuclear receptor superfamily and acts as a ligand-dependent transcription factor, playing key roles in maintenance of adipose tissue and in regulation of glucose and lipid homeostasis. This receptor is the target of thiazolidinediones, a class of antidiabetic drugs, which improve insulin sensitization and regulate glycemia in type 2 diabetes. Despite the beneficial effects of drugs, such as rosiglitazone and pioglitazone, their use is associated with several side effects, including weight gain, heart failure, and liver disease, since these drugs induce full activation of the receptor. By contrast, a promising activation-independent mechanism that involves the inhibition of cyclin-dependent kinase 5 (CDK5)-mediated PPARγ phosphorylation has been related to the insulin-sensitizing effects induced by these drugs. Thus, we aimed to identify novel PPARγ ligands that do not possess agonist properties by conducting a mini-trial with 80 compounds using the sequential steps of thermal shift assay, 8-anilino-1-naphthalenesulfonic acid fluorescence quenching, and a cell-based transactivation assay. We identified two non-agonist PPARγ ligands, AM-879 and P11, and one partial-agonist, R32. Using fluorescence anisotropy, we show that AM-879 does not dissociate the NCOR corepressor in vitro, and it has only a small effect on TRAP coactivator recruitment. In cells, AM-879 could not induce adipocyte differentiation or positively regulate the expression of genes associated with adipogenesis. In addition, AM-879 inhibited CDK5-mediated phosphorylation of PPARγ in vitro. Taken together, these findings supported an interaction between AM-879 and PPARγ; this interaction was identified by the analysis of the crystal structure of the PPARγ:AM-879 complex and evidenced by AM-879's mechanism of action as a putative PPARγ non-agonist with antidiabetic properties. Moreover, we present an optimized assay pipeline capable of detecting ligands that physically bind to PPARγ but do not cause its activation as a new strategy to identify ligands for this nuclear receptor.

10.
Eur J Pharmacol ; 775: 96-105, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26872991

RESUMEN

ß-Citronellol is a monoterpene found in the essential oil of various plants with antihypertensive properties. In fact, ß-citronellol possesses hypotensive actions due to its vasodilator abilities. Here we aimed to show that ß-citronellol recruits airway sensory neural circuitry to evoke cardiorespiratory effects. In anesthetized rats, intravenous injection of ß-citronellol caused biphasic hypotension, bradycardia and apnea. Bilateral vagotomy, perivagal capsaicin treatment or injection into the left ventricle abolished first rapid phase (named P1) but not delayed phase P2 of the ß-citronellol effects. P1 persisted after pretreatment with capsazepine, ondansetron, HC-030031 or suramin. Suramin abolished P2 of apnea. In awake rats, ß-citronellol induced biphasic hypotension and bradycardia being P1 abolished by methylatropine. In vitro, ß-citronellol inhibited spontaneous or electrically-evoked contractions of rat isolated right or left atrium, respectively, and fully relaxed sustained contractions of phenylephrine in mesenteric artery rings. In conclusion, chemosensitive pulmonary vagal afferent fibers appear to mediate the cardiovascular and respiratory effects of ß-citronellol. The transduction mechanism in P1 seems not to involve the activation of transient receptor potential vanilloid subtype 1 (TRPV1), transient receptor potential ankyrin subtype 1 (TRPA1), purinergic (P2X) or 5-HT3 receptors located on airways sensory nerves. P2 of hypotension and bradycardia seems resulting from a cardioinhibitory and vasodilatory effect of ß-citronellol and the apnea from a purinergic signaling.


Asunto(s)
Apnea/inducido químicamente , Bradicardia/inducido químicamente , Hipotensión/inducido químicamente , Monoterpenos/farmacología , Monoterpenos Acíclicos , Animales , Apnea/fisiopatología , Presión Arterial/efectos de los fármacos , Función Atrial/efectos de los fármacos , Bradicardia/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Hipotensión/fisiopatología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratas Wistar , Frecuencia Respiratoria/efectos de los fármacos , Vagotomía , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...