Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 17(5)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35944550

RESUMEN

To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a bio-hybrid semi-degradable material composed of silk fibroin (SF) and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (Øin= 1.5 mm) via electrospinning. Bio-hybrid grafts werein vitrocharacterized in terms of morphology and mechanical behaviour, and compared to similar grafts of pure SF. Similarly, two native vessels from a rodent model (abdominal aorta and vena cava) were harvested and characterized. Preliminary implants were performed on Lewis rats to confirm the suitability of Silkothane® grafts for small-calibre applications, specifically as aortic insertion and femoral shunt. The manufacturing process generated pliable grafts consisting of a randomized fibrous mesh and exhibiting similar geometrical features to rat aortas. Both Silkothane® and pure SF grafts showed radial compliances in the range from 1.37 ± 0.86 to 1.88 ± 1.01% 10-2mmHg-1, lower than that of native vessels. The Silkothane® small-calibre devices were also implanted in rats demonstrating to be adequate for vascular applications; all the treated rats survived the surgery for three months after implantation, and 16 rats out of 17 (94%) still showed blood flow inside the graft at sacrifice. The obtained results lay the basis for a deeper investigation of the interaction between the Silkothane® graft and the implant site, which may deal with further analysis on the potentialities in terms of degradability and tissue formation, on longer time-points.


Asunto(s)
Fibroínas , Injerto Vascular , Animales , Prótesis Vascular , Poliuretanos , Ratas , Ratas Endogámicas Lew
2.
Adv Healthc Mater ; 9(20): e2000794, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914588

RESUMEN

To solve the problem of vascular access failure, a novel semi-degradable hybrid vascular graft, manufactured by electrospinning using silk fibroin and polyurethane (Silkothane), has been previously developed and characterized in vitro. This proof-of-concept animal study aims at evaluating the performances of Silkothane grafts in a sheep model of arteriovenous shunt, in terms of patency and short-term remodeling. Nine Silkothane grafts are implanted between the common carotid artery and the external jugular vein of nine sheep, examined by palpation three times per week, by echo-color Doppler every two weeks, and euthanized at 30, 60, and 90 days (N = 3 per group). At sacrifice, grafts are harvested and submitted for histopathology and/or scanning electron microcopy (SEM). No cases of graft-related complications are recorded. Eight of nine sheep (89%) show 100% primary unassisted patency at the respective time of sacrifice (flow rate 1.76 ± 0.61 L min-1 , one case of surgery-related thrombosis excluded). Histopathology and SEM analysis evidence signs of inflammation and pseudointima inside the graft lumen, especially at the venous anastomosis; however, endoluminal stenosis never impairs the functionality of the shunt and coverage by endothelial cells is observed. In this model, Silkothane grafts grant safety and 100% patency up to 90 days.


Asunto(s)
Fibroínas , Animales , Prótesis Vascular , Células Endoteliales , Oclusión de Injerto Vascular , Politetrafluoroetileno , Poliuretanos , Diálisis Renal , Ovinos , Grado de Desobstrucción Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...