Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-434834

RESUMEN

Monoclonal antibodies against SARS-CoV-2 are a clinically validated therapeutic option against COVID-19. As rapidly emerging virus mutants are becoming the next major concern in the fight against the global pandemic, it is imperative that these therapeutic treatments provide coverage against circulating variants and do not contribute to development of treatment emergent resistance. To this end, we investigated the sequence diversity of the spike protein and monitored emergence of minor virus variants in SARS-COV-2 isolates found in COVID-19 patients or identified from preclinical in vitro and in vivo studies. This study demonstrates that a combination of non-competing antibodies, REGEN-COV, not only provides full coverage against current variants of concern/interest but also protects against emergence of new such variants and their potential seeding into the population in a clinical setting.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-429759

RESUMEN

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants. HighlightsO_LINVX-CoV2373 subunit vaccine elicits receptor blocking, virus neutralizing antibodies, and Fc-effector functional antibodies. C_LIO_LIThe vaccine protects against respiratory tract infection and virus shedding in non-human primates (NHPs). C_LIO_LIBoth neutralizing and Fc-effector functions contribute to protection, potentially through different mechanisms in the upper and lower respiratory tract. C_LIO_LIBoth macaque and human vaccine-induced antibodies exhibit altered Fc-receptor binding to emerging mutants. C_LI

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-421008

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD down, one-RBD up state. In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFN{gamma}+ CD8+ T-cell responses. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. Both candidates are being evaluated in phase 1 trials in Germany and the United States. BNT162b2 is being evaluated in an ongoing global, pivotal Phase 2/3 trial (NCT04380701, NCT04368728).

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-233320

RESUMEN

An urgent global quest for effective therapies to prevent and treat COVID-19 disease is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987+REGN10933) targeting non-overlapping epitopes on the SARS-CoV-2 spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques and golden hamsters and demonstrate that REGN-COV-2 can greatly reduce virus load in lower and upper airway and decrease virus induced pathological sequalae when administered prophylactically or therapeutically. Our results provide evidence of the therapeutic potential of this antibody cocktail.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-210179

RESUMEN

ABSTRACTVaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease currently lacks a validated small animal model. Here, we show that transgenic mice expressing human angiotensin converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2-transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2-transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 4. K18 hACE2-transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20093658

RESUMEN

Prolonged survival of SARS-CoV-2 on environmental surfaces and personal protective equipment (PPE) may lead to these surfaces transmitting disease to others. This article reports the effectiveness of a pulsed xenon ultraviolet (PX-UV) disinfection system in reducing the load of SARS-CoV-2 on hard surfaces and N95 respirators. Chamber slides and N95 respirator material were directly inoculated with SARS-CoV-2 and exposed to different durations of PX-UV disinfection. For hard surfaces, disinfection for 1, 2, and 5 minutes resulted in 3.53 Log10, >4.54 Log10, and >4.12 Log10 reductions in viral load, respectively. For N95 respirators, disinfection for 5 minutes resulted in >4.79 Log10 reduction in viral load. We found that PX-UV significantly reduces SARS-CoV-2 on hard surfaces and N95 respirators. With the potential to rapidly disinfectant environmental surfaces and N95 respirators, PX-UV devices are a promising technology for the reduction of environmental and PPE bioburden and to enhance both HCW and patient safety by reducing the risk of exposure to SARS-CoV-2.

7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-37854

RESUMEN

In this study, Leishmania RNA virus 1-4 (LRV1-4) particles purified from host Leishmania guyanensis promastigotes were examined for capsid endoribonuclease. Temperature optimum for the endoribonulease activity was found to be at 37degrees C to 42degrees C and the activity was specifically inhibited by the aminoglycoside antibiotics, neomycin, kanamycin, and hygromycin and by 100 mM levels of NaCl or KCl. To determine the catalytic domain of the capsid endoribonuclease activity, three point-mutation at cysteine residues at C47S (P1), C128/ 133S (P2), and C194R (P3) were prepared and each gene was constructed into baculoviruses and expressed in Sf9 insect cells. LRV1-4 capsid N- terminus (N2 and N3) and C-terminus (C1 and C2) deletion mutants (Cadd et al., 1994) were also examined by in vitro RNA cleavage assay. The results showed that the capsid mutants; C1, C2, N3, P1, and P2 were capable of forming proper virus-like particles (VLPs) and they all possessed the specific endoribonuclease activity. However, two assembly-defective capsid mutants, N2 (N- terminus 24-amino acids deletion) and P3 mutants, did not retain the specific endoribonuclease activity. Taken together, the results suggest that at least 24 amino acids from the N-terminal region and C194 residue in LRV1-4 capsid protein are functionally important for LRV1-4 viral assembly and the capsid endoribonuclease activity may be dependent upon the properly assembled LRV1-4 virus particles.


Asunto(s)
Animales , Sustitución de Aminoácidos , Antibacterianos/farmacología , Baculoviridae , Cápside/enzimología , Línea Celular , Cisteína/genética , Endorribonucleasas/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Calor , Insectos , Leishmania guyanensis/virología , ARN/química , Virus ARN/enzimología , Proteínas Recombinantes/antagonistas & inhibidores , Especificidad por Sustrato/genética , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...