Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944530

RESUMEN

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Asunto(s)
COVID-19 , Humanos , Monocitos , Pandemias , Receptor para Productos Finales de Glicación Avanzada/genética , SARS-CoV-2
2.
Cannabis Cannabinoid Res ; 7(1): 78-92, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33998879

RESUMEN

Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1ß) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1ß-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.


Asunto(s)
Astrocitos , Agonistas de Receptores de Cannabinoides , Animales , Antiinflamatorios/metabolismo , Benzoxazinas , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Humanos , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo , Morfolinas , Naftalenos , Receptores Activados del Proliferador del Peroxisoma/metabolismo
3.
Alzheimers Dement (Amst) ; 13(1): e12156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665346

RESUMEN

INTRODUCTION: Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are characterized by cognitive alterations, visual hallucinations, and motor impairment. Diagnosis is based on type and timing of clinical manifestations; however, determination of clinical subtypes is challenging. The utility of blood DNA methylation as a biomarker for Lewy body disorders (LBD) is mostly unexplored. METHODS: We performed a cross-sectional analysis of blood methylation in 42 DLB and 50 PDD cases applying linear models to compare groups and logistic least absolute shrinkage and selection operator regression to explore the discriminant power of methylation signals. RESULTS: DLB blood shows differential methylation compared to PDD. Some methylation changes associate with core features of LBD. Sets of probes show high predictive value to discriminate between variants. DISCUSSION: Our study is the first to explore LBD blood methylation. Despite overlapping clinical presentation, we detected differential epigenetic signatures that, if confirmed in independent cohorts, could be developed into useful biomarkers.

4.
Hepatology ; 74(2): 667-685, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33550587

RESUMEN

BACKGROUND AND AIMS: In clinical and experimental NASH, the origin of the scar-forming myofibroblast is the HSC. We used foz/foz mice on a Western diet to characterize in detail the phenotypic changes of HSCs in a NASH model. APPROACH AND RESULTS: We examined the single-cell expression profiles (scRNA sequencing) of HSCs purified from the normal livers of foz/foz mice on a chow diet, in NASH with fibrosis of foz/foz mice on a Western diet, and in livers during regression of NASH after switching back to a chow diet. Selected genes were analyzed using immunohistochemistry, quantitative real-time PCR, and short hairpin RNA knockdown in primary mouse HSCs. Our analysis of the normal liver identified two distinct clusters of quiescent HSCs that correspond to their acinar position of either pericentral vein or periportal vein. The NASH livers had four distinct HSC clusters, including one representing the classic fibrogenic myofibroblast. The three other HSC clusters consisted of a proliferating cluster, an intermediate activated cluster, and an immune and inflammatory cluster. The livers with NASH regression had one cluster of inactivated HSCs, which was similar to, but distinct from, the quiescent HSCs. CONCLUSIONS: Analysis of single-cell RNA sequencing in combination with an interrogation of previous studies revealed an unanticipated heterogeneity of HSC phenotypes under normal and injured states.


Asunto(s)
Redes Reguladoras de Genes , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Miofibroblastos/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Heterogeneidad Genética , Células Estrelladas Hepáticas/patología , Humanos , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual
5.
Genome Biol ; 21(1): 223, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892750

RESUMEN

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Asunto(s)
Domesticación , Genoma de Planta , Procesos de Determinación del Sexo , Vitis/genética , Haplotipos , Infertilidad Vegetal/genética , Secuenciación Completa del Genoma
6.
Epigenetics ; 14(4): 365-382, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30871403

RESUMEN

Parkinson's Disease (PD) is a common neurodegenerative disorder currently diagnosed based on the presentation of characteristic movement symptoms. Unfortunately, patients exhibiting these symptoms have already undergone significant dopaminergic neuronal loss. Earlier diagnosis, aided by molecular biomarkers specific to PD, would improve overall patient care. Epigenetic mechanisms, which are modified by both environment and disease pathophysiology, are emerging as important components of neurodegeneration. Alterations to the PD methylome have been reported in epigenome-wide association studies. However, the extent to which methylation changes correlate with disease progression has not yet been reported; nor the degree to which methylation is affected by PD medication. We performed a longitudinal genome-wide methylation study surveying ~850,000 CpG sites in whole blood from 189 well-characterized PD patients and 191 control individuals obtained at baseline and at a follow-up visit ~2 y later. We identified distinct patterns of methylation in PD cases versus controls. Importantly, we identified genomic sites where methylation changes longitudinally as the disease progresses. Moreover, we identified methylation changes associated with PD pathology through the analysis of PD cases that were not exposed to anti-parkinsonian therapy. In addition, we identified methylation sites modulated by exposure to dopamine replacement drugs. These results indicate that DNA methylation is dynamic in PD and changes over time during disease progression. To the best of our knowledge, this is the first longitudinal epigenome-wide methylation analysis for Parkinson's disease and reveals changes associated with disease progression and in response to dopaminergic medications in the blood methylome.


Asunto(s)
Metilación de ADN , Enfermedad de Parkinson/genética , Anciano , Biomarcadores/sangre , Islas de CpG , ADN/sangre , ADN/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología
7.
Oncotarget ; 7(8): 8455-65, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26863456

RESUMEN

Stress arises from an external demand placed on an organism that triggers physiological, cognitive and behavioural responses in order to cope with that request. It is thus an adaptive response useful for the survival of an organism. The objective of this study was to identify and characterize global changes in gene expression in the hippocampus in response to acute stress stimuli, by employing a mouse model of short-term restraint stress. In our experimental design mice were subjected to a one time exposure of restraint stress and the regulation of gene expression in the hippocampus was examined 3, 12 and 24 hours thereafter. Microarray analysis revealed that mice which had undergone acute restraint stress differed from non-stressed controls in global hippocampal transcriptional responses. An up-regulation of transcripts contributing directly or indirectly to neurogenesis and neuronal protection including, Ttr, Rab6, Gh, Prl, Ndufb9 and Ndufa6, was observed. Systems level analyses revealed a significant enrichment for neurogenesis, neuron morphogenesis- and cognitive functions-related biological process terms and pathways. This work further supports the hypothesis that acute stress mediates a positive action on the hippocampus favouring the formation and the preservation of neurons, which will be discussed in the context of current data from the literature.


Asunto(s)
Biomarcadores/análisis , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Restricción Física/métodos , Estrés Psicológico/genética , Animales , Regulación de la Expresión Génica , Ratones , Neurogénesis/genética , Neuroprotección/genética
8.
Pharmacogenomics ; 16(5): 471-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25916519

RESUMEN

OBJECTIVE: Acute stress provides many beneficial effects whereas chronic stress contributes to a variety of human health issues including anxiety, depression, gastrointestinal problems, cardiac disease, sleep disorders and obesity. The goal of this work was to identify, using a rodent model, hippocampal gene signatures associated with prolonged chronic stress representing candidate biomarkers and therapeutic targets for early diagnosis and pharmacological intervention for stress induced disease. MATERIALS & METHODS: Mice underwent 'restraint stress' over 7 consecutive days and hippocampal gene-expression changes were analyzed at 3, 12 and 24 h following the final restraint treatment. RESULTS: Data indicated that mice exposed to chronic restraint stress exhibit a differential gene-expression profile compared with non-stressed controls. The greatest differences were observed 12 and 24 h following the final stress test. CONCLUSION: Our study indicated that Gpr88, Ttr, Gh and Tac1 mRNAs were modulated in mice exposed to chronic restraint stress. These transcripts represent a panel of biomarkers and druggable targets for further analysis in the context of chronic stress associated disease in humans.


Asunto(s)
Biomarcadores/análisis , Expresión Génica/genética , Hipocampo/metabolismo , Estrés Psicológico/genética , Animales , Enfermedad Crónica , Perfilación de la Expresión Génica , Masculino , Ratones , Análisis por Matrices de Proteínas , ARN/biosíntesis , ARN/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reproducibilidad de los Resultados , Restricción Física
9.
PLoS One ; 8(9): e75553, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086568

RESUMEN

Sentinel fish hornyhead turbot (Pleuronichthysverticalis) captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences.


Asunto(s)
Disruptores Endocrinos/metabolismo , Peces Planos/genética , Peces Planos/metabolismo , Animales , California , Monitoreo del Ambiente/métodos , Expresión Génica/genética , Glutatión Transferasa/metabolismo , Hormonas/metabolismo , Isoenzimas/metabolismo , Hígado/metabolismo , Masculino , Análisis por Micromatrices/métodos , Vitelogeninas/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/efectos adversos , Xenobióticos/metabolismo , Zona Pelúcida/metabolismo
10.
Aquat Toxicol ; 140-141: 174-84, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23796538

RESUMEN

Laboratory tests with marine flatfish were conducted to investigate associations among gene expression, higher biological responses and wastewater effluent exposure. In the present study, male hornyhead turbot (Pleuronichthys verticalis) were exposed to environmentally realistic (0.5%) and higher (5%) concentrations of chemically enhanced advanced-primary (PL) and full-secondary treated (HTP) effluents from two southern California wastewater treatment plants (WWTP). Hepatic gene expression was examined using a custom low-density microarray. Alterations in gene expression (vs. controls) were observed in fish exposed to both effluent types. Fish exposed to 0.5% PL effluent showed changes in genes involved in the metabolism of xenobiotics, steroids, and lipids, among other processes. Fish exposed to 5% PL effluent showed expression changes in genes involved in carbohydrate metabolism, stress responses, xenobiotic metabolism, and steroid synthesis, among others. Exposure to 5% HTP effluent changed the expression of genes involved in lipid, glutathione and xenobiotic metabolism, as well as immune responses. Although no concentration-dependent patterns of response to effluent exposure were found, significant Spearman correlations were observed between the expression of 22 genes and molecular and/or higher biological responses. These results indicate that microarray gene expression data correspond to higher biological responses and should be incorporated in studies assessing fish health after exposure to complex environmental mixtures.


Asunto(s)
Proteínas de Peces/genética , Peces Planos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Proteínas de Peces/metabolismo , Peces Planos/metabolismo , Genoma , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...