Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832548

RESUMEN

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , ARN , Humanos , ARN/genética , Microscopía por Crioelectrón , ARN Helicasas/genética , ARN Helicasas/química , Enzimas Multifuncionales/genética , ADN/genética , Homeostasis , ADN Helicasas/genética
2.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997703

RESUMEN

Finding the conditions to stabilize a macromolecular target for imaging remains the most critical barrier to determining its structure by cryo-electron microscopy (cryo-EM). While automation has significantly increased the speed of data collection, specimens are still screened manually, a laborious and subjective task that often determines the success of a project. Here, we present SmartScope, the first framework to streamline, standardize, and automate specimen evaluation in cryo-EM. SmartScope employs deep-learning-based object detection to identify and classify features suitable for imaging, allowing it to perform thorough specimen screening in a fully automated manner. A web interface provides remote control over the automated operation of the microscope in real time and access to images and annotation tools. Manual annotations can be used to re-train the feature recognition models, leading to improvements in performance. Our automated tool for systematic evaluation of specimens streamlines structure determination and lowers the barrier of adoption for cryo-EM.


Asunto(s)
Microscopía por Crioelectrón , Automatización , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares
3.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914129

RESUMEN

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Asunto(s)
Microscopía por Crioelectrón , ADN Helicasas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Multimerización de Proteína , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , Espectrometría de Masas , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura
4.
Methods ; 205: 263-270, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779765

RESUMEN

The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.


Asunto(s)
ADN Helicasas , ADN Mitocondrial , Microscopía por Crioelectrón , ADN Helicasas/química , Replicación del ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
FEBS Open Bio ; 12(9): 1567-1583, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35445579

RESUMEN

Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.


Asunto(s)
COVID-19 , Proteínas no Estructurales Virales , Humanos , Mutación , Ribonucleasas , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
J Biol Chem ; 298(1): 101518, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942146

RESUMEN

Understanding the core replication complex of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are nonstructural protein 14 (NSP14), a bifunctional enzyme with an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase, and its accessory protein, NSP10. The difficulty in producing pure and high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from Escherichia coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe that NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosylhomocysteine. Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analog intermediate of remdesivir does not inhibit NSP14 activity; and second, S-adenosylhomocysteine modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure-function studies of SARS-CoV-2 replication fidelity for the treatment of coronavirus disease 2019.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/metabolismo , Activación Enzimática , Replicación Viral/efectos de los fármacos
7.
Nucleic Acids Res ; 48(11): 6310-6325, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32356875

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ubiquitina/metabolismo , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Modelos Moleculares , Mutación , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Especificidad por Sustrato , Sumoilación , Ubiquitina/química , Ubiquitina/genética
8.
Cell Mol Life Sci ; 77(1): 81-91, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31728578

RESUMEN

The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.


Asunto(s)
Roturas del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Animales , ADN/química , ADN/genética , ADN-Topoisomerasas de Tipo II/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Sumoilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Nat Commun ; 10(1): 5431, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780661

RESUMEN

DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.


Asunto(s)
ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Magnesio/metabolismo , Proteínas Nucleares/metabolismo , ADN/ultraestructura , Roturas del ADN de Cadena Simple , Daño del ADN , ADN Ligasa (ATP)/ultraestructura , Reparación del ADN , Replicación del ADN , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Conformación de Ácido Nucleico , Oxidación-Reducción , Estructura Terciaria de Proteína , Reparación del ADN por Recombinación
10.
Curr Opin Struct Biol ; 53: 187-198, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30481609

RESUMEN

Poly(ADP-ribose) is a posttranslational modification and signaling molecule that regulates many aspects of human cell biology, and it is synthesized by enzymes known as poly(ADP-ribose) polymerases, or PARPs. A diverse collection of domain structures dictates the different cellular roles of PARP enzymes and regulates the production of poly(ADP-ribose). Here we primarily review recent structural insights into the regulation and catalysis of two family members: PARP-1 and Tankyrase. PARP-1 has multiple roles in the cellular response to DNA damage and the regulation of gene transcription, and Tankyrase regulates a diverse set of target proteins involved in cellular processes such as mitosis, genome integrity, and cell signaling. Both enzymes offer interesting modes of regulating the production and the target site selectivity of the poly(ADP-ribose) modification.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/química , Tanquirasas/química , Proteínas de Unión al ADN/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Dominios Proteicos/fisiología , Tanquirasas/antagonistas & inhibidores , Tanquirasas/fisiología
11.
Methods Mol Biol ; 1608: 431-444, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695525

RESUMEN

Human PARP-1, PARP-2, and PARP-3 are key players in the cellular response to DNA damage, during which their catalytic activities are acutely stimulated through interaction with DNA strand breaks. There are also roles for these PARPs outside of the DNA damage response, most notably for PARP-1 and PARP-2 in the regulation of gene expression. Here, we describe a general method to express and purify these DNA damage-dependent PARPs from E. coli cells for use in biochemical assays and for structural and functional analysis. The procedure allows for robust production of PARP enzymes that are free of contaminant DNA that can interfere with downstream analysis. The described protocols have been updated from our earlier reported methods, most importantly to introduce PARP inhibitors in the production scheme to cope with enzyme toxicity that can compromise the yield of purified protein.


Asunto(s)
Daño del ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/aislamiento & purificación , Animales , Cromatografía de Afinidad , Daño del ADN/efectos de los fármacos , Escherichia coli/enzimología , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/aislamiento & purificación , Poli(ADP-Ribosa) Polimerasas/metabolismo
12.
Structure ; 24(9): 1573-81, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27499439

RESUMEN

Tankyrase-1 (TNKS1/PARP-5a) is a poly(ADP-ribose) polymerase (PARP) enzyme that regulates multiple cellular processes creating a poly(ADP-ribose) posttranslational modification that can lead to target protein turnover. TNKS1 thereby controls protein levels of key components of signaling pathways, including Axin1, the limiting component of the destruction complex in canonical Wnt signaling that degrades ß-catenin to prevent its coactivator function in gene expression. There are limited molecular level insights into TNKS1 regulation in cell signaling pathways. TNKS1 has a sterile α motif (SAM) domain that is known to mediate polymerization, but the functional requirement for SAM polymerization has not been assessed. We have determined the crystal structure of wild-type human TNKS1 SAM domain and used structure-based mutagenesis to disrupt polymer formation and assess the consequences on TNKS1 regulation of ß-catenin-dependent transcription. Our data indicate the SAM polymer is critical for TNKS1 catalytic activity and allows TNKS1 to efficiently access cytoplasmic signaling complexes.


Asunto(s)
Proteína Axina/química , Proteínas Recombinantes de Fusión/química , Motivo alfa Estéril , Tanquirasas/química , beta Catenina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Sitios de Unión , Proliferación Celular , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Polimerizacion , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tanquirasas/genética , Tanquirasas/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
13.
Nucleic Acids Res ; 44(4): 1691-702, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26704974

RESUMEN

Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the functional domains of PARP-2, which has restricted our understanding of how PARP-2 is specialized toward specific repair pathways. PARP-2 has a modular architecture composed of a C-terminal catalytic domain (CAT), a central Trp-Gly-Arg (WGR) domain and an N-terminal region (NTR). Although the NTR is generally considered the key DNA-binding domain of PARP-2, we report here that all three domains of PARP-2 collectively contribute to interaction with DNA damage. Biophysical, structural and biochemical analyses indicate that the NTR is natively disordered, and is only required for activation on specific types of DNA damage. Interestingly, the NTR is not essential for PARP-2 localization to sites of DNA damage. Rather, the WGR and CAT domains function together to recruit PARP-2 to sites of DNA breaks. Our study differentiates the functions of PARP-2 domains from those of PARP-1, the other major DDR-PARP, and highlights the specialization of the multi-domain architectures of DDR-PARPs.


Asunto(s)
Dominio Catalítico/genética , Daño del ADN/genética , Poli(ADP-Ribosa) Polimerasas/genética , Roturas del ADN , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Estructura Terciaria de Proteína/genética
14.
Mol Cell ; 60(5): 742-754, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26626479

RESUMEN

Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , Reparación del ADN , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1 , Pliegue de Proteína , Dedos de Zinc
15.
Mol Cell ; 60(5): 755-768, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26626480

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.


Asunto(s)
ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Desplegamiento Proteico , Dominio Catalítico , Cristalografía por Rayos X , Roturas del ADN , Reparación del ADN , Medición de Intercambio de Deuterio , Humanos , Modelos Moleculares , Mutación , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Estructura Secundaria de Proteína
16.
DNA Repair (Amst) ; 30: 68-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25800440

RESUMEN

An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.


Asunto(s)
Proteínas de Ciclo Celular/química , Poli Adenosina Difosfato Ribosa/análisis , Poli(ADP-Ribosa) Polimerasas/química , Animales , Bovinos , Proteínas de Ciclo Celular/metabolismo , Humanos , Espectrometría de Masas , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Estructura Terciaria de Proteína
17.
Nucleic Acids Res ; 42(12): 7762-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928857

RESUMEN

PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains-Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5' phosphate (5'P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regulación Alostérica , Proteínas de Ciclo Celular/química , Activación Enzimática , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...