Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stress ; 17(1): 39-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23768074

RESUMEN

Corticotropin-releasing hormone (CRH) contributes crucially to the regulation of central and peripheral responses to stress. Because of the importance of a finely tuned stress system, CRH expression is tightly regulated in an organ- and brain region-specific manner. Thus, in the hypothalamus, CRH is constitutively expressed and this expression is further enhanced by stress; however, the underlying regulatory mechanisms are not fully understood. The regulatory region of the crh gene contains several elements, including the cyclic-AMP response element (CRE), and the role of the CRE interaction with the cyclic-AMP response element binding protein (CREB) in CRH expression has been a focus of intensive research. Notably, whereas thousands of genes contain a CRE, the functional regulation of gene expression by the CRE:CREB system is limited to ∼100 genes, and likely requires additional proteins. Here, we investigated the role of a member of the CREB complex, CREB binding protein (CBP), in basal and stress-induced CRH expression during development and in the adult. Using mice with a deficient CREB-binding site on CBP, we found that CBP:CREB interaction is necessary for normal basal CRH expression at the mRNA and protein level in the nine-day-old mouse, prior to onset of functional regulation of hypothalamic CRH expression by glucocorticoids. This interaction, which functions directly on crh or indirectly via regulation of other genes, was no longer required for maintenance of basal CRH expression levels in the adult. However, CBP:CREB binding contributed to stress-induced CRH expression in the adult, enabling rapid CRH synthesis in hypothalamus. CBP:CREB binding deficiency did not disrupt basal corticosterone plasma levels or acute stress-evoked corticosterone release. Because dysregulation of CRH expression occurs in stress-related disorders including depression, a full understanding of the complex regulation of this gene is important in both health and disease.


Asunto(s)
Hormona Liberadora de Corticotropina/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipotálamo/metabolismo , Envejecimiento , Animales , Animales Recién Nacidos , Corticosterona/sangre , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Masculino , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Restricción Física , Estrés Fisiológico , Estrés Psicológico
2.
J Neurosci ; 31(38): 13625-34, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940453

RESUMEN

Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Hormona Liberadora de Corticotropina/fisiología , Prosencéfalo/metabolismo , Receptores de Hormona Liberadora de Corticotropina/fisiología , Estrés Psicológico/fisiopatología , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/citología , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Conducta Espacial/fisiología , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Estrés Psicológico/psicología
3.
Proc Natl Acad Sci U S A ; 107(29): 13123-8, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615973

RESUMEN

Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Espinas Dendríticas/patología , Hipocampo/fisiopatología , Memoria/fisiología , Transducción de Señal , Estrés Psicológico/fisiopatología , Animales , Cognición/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Estrés Psicológico/metabolismo , Sinapsis/patología , Factores de Tiempo
4.
Endocrinology ; 149(10): 4892-900, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18566122

RESUMEN

Chronic early-life stress (ES) exerts profound acute and long-lasting effects on the hypothalamic-pituitary-adrenal system, with relevance to cognitive function and affective disorders. Our ability to determine the molecular mechanisms underlying these effects should benefit greatly from appropriate mouse models because these would enable use of powerful transgenic methods. Therefore, we have characterized a mouse model of chronic ES, which was provoked in mouse pups by abnormal, fragmented interactions with the dam. Dam-pup interaction was disrupted by limiting the nesting and bedding material in the cages, a manipulation that affected this parameter in a dose-dependent manner. At the end of their week-long rearing in the limited-nesting cages, mouse pups were stressed, as apparent from elevated basal plasma corticosterone levels. In addition, steady-state mRNA levels of CRH in the hypothalamic paraventricular nucleus of ES-experiencing pups were reduced, without significant change in mRNA levels of arginine vasopressin. Rearing mouse pups in this stress-provoking cage environment resulted in enduring effects: basal plasma corticosterone levels were still increased, and CRH mRNA levels in paraventricular nucleus remained reduced in adult ES mice, compared with those of controls. In addition, hippocampus-dependent learning and memory functions were impaired in 4- to 8-month-old ES mice. In summary, this novel, robust model of chronic early life stress in the mouse results in acute and enduring neuroendocrine and cognitive abnormalities. This model should facilitate the examination of the specific genes and molecules involved in the generation of this stress as well as in its consequences.


Asunto(s)
Modelos Animales de Enfermedad , Vivienda para Animales , Ratones Endogámicos C57BL , Comportamiento de Nidificación/fisiología , Estrés Psicológico/fisiopatología , Enfermedad Aguda , Factores de Edad , Animales , Ansiedad/fisiopatología , Arginina Vasopresina/metabolismo , Enfermedad Crónica , Corticosterona/sangre , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Ambiente , Femenino , Hipocampo/fisiología , Hipotálamo/embriología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Ratones , Embarazo , ARN Mensajero/metabolismo
5.
J Neurosci ; 28(11): 2903-11, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18337421

RESUMEN

Chronic stress causes dendritic regression and loss of dendritic spines in hippocampal neurons that is accompanied by deficits in synaptic plasticity and memory. However, the responsible mechanisms remain unresolved. Here, we found that within hours of the onset of stress, the density of dendritic spines declined in vulnerable dendritic domains. This rapid, stress-induced spine loss was abolished by blocking the receptor (CRFR(1)) of corticotropin-releasing hormone (CRH), a hippocampal neuropeptide released during stress. Exposure to CRH provoked spine loss and dendritic regression in hippocampal organotypic cultures, and selective blockade of the CRFR(1) receptor had the opposite effect. Live, time-lapse imaging revealed that CRH reduced spine density by altering dendritic spine dynamics: the peptide selectively and reversibly accelerated spine retraction, and this mechanism involved destabilization of spine F-actin. In addition, mice lacking the CRFR(1) receptor had augmented spine density. These findings support a mechanistic role for CRH-CRFR(1) signaling in stress-evoked spine loss and dendritic remodeling.


Asunto(s)
Hormona Liberadora de Corticotropina/farmacología , Espinas Dendríticas/patología , Estrés Fisiológico/patología , Animales , Recuento de Células/métodos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Receptores de Hormona Liberadora de Corticotropina/agonistas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Fisiológico/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...