Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38712546

RESUMEN

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.

3.
Microsc Microanal ; 29(Supplement_1): 1058-1059, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613364
4.
Sci Adv ; 9(32): eadg9832, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556531

RESUMEN

Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Humanos , Histonas/genética , Nucleosomas , Lisina , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36867678

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Estados Unidos , Humanos , Antígenos de Superficie , Linfocitos B , Muerte Celular
6.
J Struct Biol X ; 7: 100085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742017

RESUMEN

Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.

7.
J Struct Biol ; 214(4): 107913, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341954

RESUMEN

This report provides an overview of the discussions, presentations, and consensus thinking from the Workshop on Smart Data Collection for CryoEM held at the New York Structural Biology Center on April 6-7, 2022. The goal of the workshop was to address next generation data collection strategies that integrate machine learning and real-time processing into the workflow to reduce or eliminate the need for operator intervention.


Asunto(s)
Recolección de Datos
8.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099266

RESUMEN

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales , SARS-CoV-2
9.
Nat Commun ; 13(1): 3854, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788586

RESUMEN

The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.


Asunto(s)
Canal de Potasio Kv1.3/química , Linfocitos T , Humanos , Inmunoglobulinas/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Lisina , Linfocitos T/química
10.
FEBS J ; 289(6): 1515-1523, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34403567

RESUMEN

The divalent anion sodium symporter (DASS) family contains both sodium-driven anion cotransporters and anion/anion exchangers. The family belongs to a broader ion transporter superfamily (ITS), which comprises 24 families of transporters, including those of AbgT antibiotic efflux transporters. The human proteins in the DASS family play major physiological roles and are drug targets. We recently determined multiple structures of the human sodium-dependent citrate transporter (NaCT) and the succinate/dicarboxylate transporter from Lactobacillus acidophilus (LaINDY). Structures of both proteins show high degrees of structural similarity to the previously determined VcINDY fold. Conservation between these DASS protein structures and those from the AbgT family indicates that the VcINDY fold represents the overall protein structure for the entire ITS. The new structures of NaCT and LaINDY are captured in the inward- or outward-facing conformations, respectively. The domain arrangements in these structures agree with a rigid body elevator-type transport mechanism for substrate translocation across the membrane. Two separate NaCT structures in complex with a substrate or an inhibitor allowed us to explain the inhibition mechanism and propose a detailed classification scheme for grouping disease-causing mutations in the human protein. Structural understanding of multiple kinetic states of DASS proteins is a first step toward the detailed characterization of their entire transport cycle.


Asunto(s)
Proteínas de Transporte de Membrana , Simportadores , Aniones/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Sodio/metabolismo , Simportadores/metabolismo
11.
Nature ; 591(7848): 157-161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597751

RESUMEN

Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1-3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor-which binds to the same site as citrate-arrests the transport cycle of NaCT. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6-8.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Ácido Cítrico/metabolismo , Microscopía por Crioelectrón , Malatos/farmacología , Fenilbutiratos/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/química , Sitios de Unión , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Ácido Cítrico/química , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Malatos/química , Modelos Moleculares , Mutación , Fenilbutiratos/química , Multimerización de Proteína , Sodio/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética , Simportadores/genética , Simportadores/ultraestructura
12.
bioRxiv ; 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34981050

RESUMEN

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.

13.
Protein Sci ; 30(1): 136-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33030237

RESUMEN

Leginon is a system for automated data acquisition from a transmission electron microscope. Here we provide an updated summary of the overall Leginon architecture and an update of the current state of the package. We also highlight a few recent developments to provide some concrete examples and use cases.


Asunto(s)
Microscopía Electrónica de Transmisión , Programas Informáticos
14.
Metallomics ; 12(8): 1208-1219, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32744273

RESUMEN

Human brain derived neurotrophic factor (BDNF) encodes a protein product consisting of a C-terminal mature domain (mature BDNF) and an N-terminal prodomain, which is an intrinsically disordered protein. A common single nucleotide polymorphism in humans results in a methionine substitution for valine at position 66 of the prodomain, and is associated with memory deficits, depression and anxiety disorders. The BDNF Met66 prodomain, but not the Val66 prodomain, promotes rapid structural remodeling of hippocampal neurons' growth cones and dendritic spines by interacting directly with the SorCS2 receptor. While it has been reported that the Met66 and Val66 prodomains exhibit only modest differences in structural propensities in the apo state, here we show that Val66 and Met66 prodomains differentially bind zinc (Zn). Zn2+ binds with higher affinity and more broadly impacts residues on the Met66 prodomain compared to the Val66 prodomain as shown by NMR and ITC. Zn2+ binding to the Met66 and Val66 prodomains results in distinct conformational and macroscopic differences observed by NMR, light scattering and cryoEM. To determine if Zn2+ mediated conformational change in the Met66 prodomain is required for biological effect, we mutated His40, a Zn2+ binding site, and observed a loss of Met66 prodomain bioactivity. As the His40 site is distant from the known region of the prodomain involved in receptor binding, we suggest that Met66 prodomain bioactivity involves His40 mediated stabilization of the multimeric structure. Our results point to the necessity of a Zn2+-mediated higher order molecular assembly of the Met66 prodomain to mediate neuronal remodeling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/química , Zinc/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Proteínas del Tejido Nervioso/química , Unión Proteica
16.
Nature ; 584(7820): 304-309, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32581365

RESUMEN

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-B/química , Receptores de GABA-B/ultraestructura , Calcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-B/metabolismo , Relación Estructura-Actividad
17.
Sci Adv ; 6(14): eaay9572, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270040

RESUMEN

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Retículo Endoplásmico/metabolismo , Ribosomas/metabolismo , Animales , Transporte Biológico , Microscopía por Crioelectrón , Vesículas Citoplasmáticas/ultraestructura , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular , Especificidad de Órganos , Ratas , Ribosomas/ultraestructura , Estrés Fisiológico
18.
J Eukaryot Microbiol ; 67(1): 28-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31332877

RESUMEN

All microsporidia share a unique, extracellular spore stage, containing the infective sporoplasm and the apparatus for initiating infection. The polar filament/polar tube when exiting the spore transports the sporoplasm through it into a host cell. While universal, these structures and processes have been enigmatic. This study utilized several types of microscopy, describing and extending our understanding of these structures and their functions. Cryogenically preserved polar tubes vary in diameter from 155 to over 200 nm, noticeably larger than fixed-sectioned or negatively stained samples. The polar tube surface is pleated and covered with fine fibrillar material that projects from the surface and is organized in clusters or tufts. These fibrils may be the sites of glycoproteins providing protection and aiding infectivity. The polar tube surface is ridged with 5-6 nm spacing between ridges, enabling the polar tube to rapidly increase its diameter to facilitate the passage of the various cargo including cylinders, sacs or vesicles filled with particulate material and the intact sporoplasm containing a diplokaryon. The lumen of the tube is lined with a membrane that facilitates this passage. Careful examination of the terminus of the tube indicates that it has a closed tip where the membranes for the terminal sac are located.


Asunto(s)
Citoplasma/ultraestructura , Microsporidios/ultraestructura , Esporas Fúngicas/ultraestructura , Microscopía por Crioelectrón , Microscopía , Microscopía Electrónica de Transmisión , Microsporidios/citología , Esporas Fúngicas/citología
19.
Nat Struct Mol Biol ; 26(10): 955-962, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582849

RESUMEN

DNA polymerase δ (Polδ) plays pivotal roles in eukaryotic DNA replication and repair. Polδ is conserved from yeast to humans, and mutations in human Polδ have been implicated in various cancers. Saccharomyces cerevisiae Polδ consists of catalytic Pol3 and the regulatory Pol31 and Pol32 subunits. Here, we present the near atomic resolution (3.2 Å) cryo-EM structure of yeast Polδ holoenzyme in the act of DNA synthesis. The structure reveals an unexpected arrangement in which the regulatory subunits (Pol31 and Pol32) lie next to the exonuclease domain of Pol3 but do not engage the DNA. The Pol3 C-terminal domain contains a 4Fe-4S cluster and emerges as the keystone of Polδ assembly. We also show that the catalytic and regulatory subunits rotate relative to each other and that this is an intrinsic feature of the Polδ architecture. Collectively, the structure provides a framework for understanding DNA transactions at the replication fork.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa Dirigida por ADN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , ADN Polimerasa III/metabolismo , ADN Polimerasa III/ultraestructura , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
20.
J Struct Biol ; 207(1): 49-55, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31121317

RESUMEN

Recent advances in instrumentation and software for cryoEM have increased the applicability and utility of this method. High levels of automation and faster data acquisition rates require hard decisions to be made regarding data retention. Here we investigate the efficacy of data compression applied to aligned summed movie files. Surprisingly, these images can be compressed using a standard lossy method that reduces file storage by 90-95% and yet can still be processed to provide sub-2 Šreconstructed maps. We do not advocate this as an archival method, but it may provide a useful means for retaining images as an historical record, especially at large facilities.


Asunto(s)
Microscopía por Crioelectrón/métodos , Compresión de Datos/métodos , Almacenamiento y Recuperación de la Información , Automatización , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...