Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4154, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755205

RESUMEN

The precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory are not fully understood. Two-photon calcium imaging allows the activity of individual cells to be followed across long periods, but conventional approaches require head-fixation, which limits the type of behavior that can be studied. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior. Compared to previous systems that used mechanical restraint, there are no moving parts and animals can engage and disengage entirely at will. This system is failsafe, easy for animals to use and reliable enough to allow long-term experiments to be routinely performed. Animals completed hundreds of trials per session of an odor discrimination task that required 2-4 s fixations. Together with a reflectance fluorescence collection scheme that increases two-photon signal and a transgenic Thy1-GCaMP6f rat line, we are able to reliably image the cellular activity in the hippocampus during behavior over long periods (median 6 months), allowing us track the same neurons over a large fraction of animals' lives (up to 19 months).


Asunto(s)
Hipocampo , Neuronas , Ratas Transgénicas , Animales , Hipocampo/citología , Neuronas/metabolismo , Ratas , Masculino , Calcio/metabolismo , Cabeza/diagnóstico por imagen , Magnetismo , Odorantes/análisis , Femenino
2.
Nat Neurosci ; 26(1): 131-139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581729

RESUMEN

Daily experience suggests that we perceive distances near us linearly. However, the actual geometry of spatial representation in the brain is unknown. Here we report that neurons in the CA1 region of rat hippocampus that mediate spatial perception represent space according to a non-linear hyperbolic geometry. This geometry uses an exponential scale and yields greater positional information than a linear scale. We found that the size of the representation matches the optimal predictions for the number of CA1 neurons. The representations also dynamically expanded proportional to the logarithm of time that the animal spent exploring the environment, in correspondence with the maximal mutual information that can be received. The dynamic changes tracked even small variations due to changes in the running speed of the animal. These results demonstrate how neural circuits achieve efficient representations using dynamic hyperbolic geometry.


Asunto(s)
Encéfalo , Hipocampo , Ratas , Animales , Hipocampo/fisiología , Percepción Espacial/fisiología , Neuronas/fisiología , Región CA1 Hipocampal/fisiología
3.
Nature ; 551(7679): 232-236, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120427

RESUMEN

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Asunto(s)
Electrodos , Neuronas/fisiología , Silicio/metabolismo , Animales , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Femenino , Masculino , Ratones , Movimiento/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Ratas , Semiconductores , Vigilia/fisiología
4.
PLoS One ; 9(10): e111300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333512

RESUMEN

Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Conducta de Elección/fisiología , Conducta Impulsiva/fisiología , Corteza Prefrontal/fisiología , Animales , Humanos , Masculino , Actividad Motora/fisiología , Núcleo Accumbens/fisiología , Ratas , Tiempo de Reacción , Recompensa
5.
Science ; 345(6198): 814-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124440

RESUMEN

The rules governing the formation of spatial maps in the hippocampus have not been determined. We investigated the large-scale structure of place field activity by recording hippocampal neurons in rats exploring a previously unencountered 48-meter-long track. Single-cell and population activities were well described by a two-parameter stochastic model. Individual neurons had their own characteristic propensity for forming fields randomly along the track, with some cells expressing many fields and many exhibiting few or none. Because of the particular distribution of propensities across cells, the number of neurons with fields scaled logarithmically with track length over a wide, ethological range. These features constrain hippocampal memory mechanisms, may allow efficient encoding of environments and experiences of vastly different extents and durations, and could reflect general principles of population coding.


Asunto(s)
Región CA1 Hipocampal/fisiología , Células Piramidales/fisiología , Percepción Espacial , Potenciales de Acción , Animales , Mapeo Encefálico , Región CA1 Hipocampal/citología , Electrodos Implantados , Conducta Exploratoria , Masculino , Aprendizaje por Laberinto , Memoria/fisiología , Orientación , Distribución de Poisson , Ratas , Ratas Long-Evans
6.
Biomed Tech (Berl) ; 59(4): 291-303, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24101367

RESUMEN

Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Bombas de Infusión Implantables , Sistemas Microelectromecánicos/instrumentación , Microelectrodos , Microinyecciones/instrumentación , Animales , Encéfalo/cirugía , Diseño de Equipo , Humanos , Miniaturización , Integración de Sistemas
7.
Biomed Microdevices ; 14(5): 799-809, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22622711

RESUMEN

Microinfusions of drugs directly into the central nervous system of awake animals represent a widely used means of unravelling brain functions related to behaviour. However, current approaches generally use tethered liquid infusion systems and a syringe pump to deliver drugs into the brain, which often interfere with behaviour. We address this shortfall with a miniaturised electronically-controlled drug delivery system (20 × 17.5 × 5 mm³) designed to be skull-mounted in rats. The device features a micropump connected to two 8-mm-long silicon microprobes with a cross section of 250 × 250 µm² and integrated fluid microchannels. Using an external electronic control unit, the device allows infusion of 16 metered doses (0.25 µL each, 8 per silicon shaft). Each dosage requires 3.375 Ws of electrical power making the device additionally compatible with state-of-the-art wireless headstages. A dosage precision of 0.25 ± 0.01 µL was determined in vitro before in vivo tests were carried out in awake rats. No passive leakage from the loaded devices into the brain could be detected using methylene blue dye. Finally, the device was used to investigate the effects of the NMDA-receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (R)-CPP, administered directly into the prefrontal cortex of rats during performance on a task to assess visual attention and impulsivity. In agreement with previous findings using conventional tethered infusion systems, acute (R)-CPP administration produced a marked increase in impulsivity.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Piperazinas/administración & dosificación , Animales , Atención/efectos de los fármacos , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Conducta Impulsiva/metabolismo , Microinyecciones , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
8.
Artículo en Inglés | MEDLINE | ID: mdl-22254797

RESUMEN

This paper reports on a compact, small-scale neural recording system combining state-of-art silicon-based probe arrays with a light-weight 32-channel wireless head stage. The system is equipped with two- and four-shaft, comb-shaped probe arrays connected to highly flexible ribbon cables enabling a reliable and controlled insertion of probe arrays through the intact dura mater into the medial prefrontal cortex and nucleus accumbens of rats. The in vivo experiments applied the 5-choice serial reaction time task (5-CSRTT) using freely behaving rats in order to understand the neural basis of sustained visual attention and impulsivity. The long-term stability of the system allowed local field potential (LFP) activity to be recorded without a significant decrement in signal quality for up to 28 weeks, and similarly, we were able to follow single unit activity for up to 4 weeks.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Electrodos Implantados , Electrodos , Electroencefalografía/instrumentación , Neuronas/fisiología , Telemetría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Análisis por Micromatrices/instrumentación , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...