Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1219279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790939

RESUMEN

The transcription factor Fli-1, a member of the ETS family of transcription factors, is implicated in the pathogenesis of lupus disease. Reduced Fli-1 expression in lupus mice leads to decreased renal Cxcl10 mRNA levels and renal infiltrating CXCR3+ T cells that parallels reduced renal inflammatory cell infiltration and renal damage. Inflammatory chemokine CXCL10 is critical for attracting inflammatory cells expressing the chemokine receptor CXCR3. The CXCL10/CXCR3 axis plays a role in the pathogenesis of various inflammatory diseases including lupus. Our data here demonstrate that renal CXCL10 protein levels are significantly lower in Fli-1 heterozygous MRL/lpr mice compared to wild-type MRL/lpr mice. Knockdown of Fli-1 significantly reduced CXCL10 secretion in mouse and human endothelial cells, and human mesangial cells, upon LPS or TNFα stimulation. The Fli-1 inhibitor, Camptothecin, significantly reduced CXCL10 production in human monocyte cells upon interferon stimulation. Four putative Ets binding sites in the Cxcl10 promoter showed significant enrichment for FLI-1; however, FLI-1 did not directly drive transcription from the human or mouse promoters, suggesting FLI-1 may regulate CXCL10 expression indirectly. Our results also suggest that the DNA binding domain of FLI-1 is necessary for regulation of human hCXCR3 promotor activity in human T cells and interactions with co-activators. Together, these results support a role for FLI-1 in modulating the CXCL10-CXCR3 axis by directly or indirectly regulating the expression of both genes to impact lupus disease development. Signaling pathways or drugs that reduce FLI-1 expression may offer novel approaches to lupus treatment.


Asunto(s)
Células Endoteliales , Proteína Proto-Oncogénica c-fli-1 , Animales , Humanos , Ratones , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Células Endoteliales/metabolismo , Riñón/patología , Ratones Endogámicos MRL lpr , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
2.
J Autoimmun ; 97: 59-69, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30416032

RESUMEN

Female sex is a risk factor for lupus. Sex hormones, sex chromosomes and hormone receptors are implicated in the pathogenic pathways in lupus. Estrogen receptor alpha (ERα) knockout (KO) mice are used for defining hormone receptor effects in lupus. Prior studies of ERα KO in lupus have conflicting results, likely due to sex hormone levels, different lupus strains and different ERα KO constructs. Our objective was to compare a complete KO of ERα vs. the original functional KO of ERα (expressing a short ERα) on disease expression and immune phenotype, while controlling sex hormone levels. We studied female lupus prone NZM2410 WT and ERα mutant mice. All mice (n = 44) were ovariectomized (OVX) for hormonal control. Groups of each genotype were estrogen (E2)-repleted after OVX. We found that OVXed NZM mice expressing the truncated ERα (ERα short) had significantly reduced nephritis and prolonged survival compared to both wildtype and the complete ERαKO (ERα null) mice, but surprisingly only if E2-repleted. ERα null mice were not protected regardless of E2 status. We observed significant differences in splenic B cells and dendritic cells and a decrease in cDC2 (CD11b+CD8-) dendritic cells, without a concomitant decrease in cDC1 (CD11b-CD8a+) cells comparing ERα short to ERα null or WT mice. Our data support a protective role for the ERα short protein. ERα short is similar to an endogenously expressed ERα variant (ERα46). Modulating its expression/activity represents a potential approach for treating female-predominant autoimmune diseases.


Asunto(s)
Susceptibilidad a Enfermedades , Receptor alfa de Estrógeno/genética , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Animales , Autoinmunidad/genética , Biomarcadores , Biopsia , Complemento C3/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/patología , Nefritis Lúpica/etiología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Ratones , Ratones Noqueados , Proteinuria/etiología , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Tasa de Supervivencia
3.
Lupus Sci Med ; 5(1): e000199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29387435

RESUMEN

Lupus is a complex heterogeneous disease characterised by autoantibody production and immune complex deposition followed by damage to target tissues. Animal models of human diseases are an invaluable tool for defining pathogenic mechanisms and testing of novel therapeutic agents. There are perhaps more applicable murine models of lupus than any other human disease. There are spontaneous models of lupus, inducible models of lupus, transgenic-induced lupus, gene knockout induced lupus and humanised mouse models of lupus. These mouse models of lupus have contributed significantly to our knowledge of the pathogenesis of lupus and served as valuable preclinical models for proof of concept for new therapies. Despite their utility, mouse models of lupus have their distinct limitations. Although similar, mouse and human immune systems are different and thus one cannot assume a mechanism for disease in one is translatable to the other. Efficacy and toxicity of compounds can vary significantly between humans and mice, also limiting direct translation. Finally, the heterogeneous aspects of human lupus, both in clinical presentation, underlying pathogenesis and genetics, are not completely represented in current mouse models. Thus, proving a therapy or mechanism of disease in one mouse model is similar to proving a mechanism/therapy in a limited subset of human lupus. These limitations, however, do not marginalise the importance of animal models nor the significant contributions they have made to our understanding of lupus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...