Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Trauma Emerg Surg ; 49(6): 2569-2578, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555991

RESUMEN

BACKGROUND/PURPOSE: The surgical fixation of a symphyseal diastasis in partially or fully unstable pelvic ring injuries is an important element when stabilizing the anterior pelvic ring. Currently, open reduction and internal fixation (ORIF) by means of plating represents the gold standard treatment. Advances in percutaneous fixation techniques have shown improvements in blood loss, surgery time, and scar length. Therefore, this approach should also be adopted for treatment of symphyseal injuries. The technique could be important since failure rates, following ORIF at the symphysis, remain unacceptably high. The aim of this biomechanical study was to assess a semi-rigid fixation technique for treatment of such anterior pelvic ring injuries versus current gold standards of plate osteosynthesis. METHODS: An anterior pelvic ring injury type III APC according to the Young and Burgess classification was simulated in eighteen composite pelvises, assigned to three groups (n = 6) for fixation with either a single plate, two orthogonally positioned plates, or the semi-rigid technique using an endobutton suture implant. Biomechanical testing was performed in a simulated upright standing position under progressively increasing cyclic loading at 2 Hz until failure or over 150,000 cycles. Relative movements between the bone segments were captured by motion tracking. RESULTS: Initial quasi-static and dynamic stiffness, as well as dynamic stiffness after 100,000 cycles, was not significantly different among the fixation techniques (p ≥ 0.054).). The outcome measures for total displacement after 20,000, 40,000, 60,000, 80,000, and 100,000 cycles were associated with significantly higher values for the suture technique versus double plating (p = 0.025), without further significant differences among the techniques (p ≥ 0.349). Number of cycles to failure and load at failure were highest for double plating (150,000 ± 0/100.0 ± 0.0 N), followed by single plating (132,282 ± 20,465/91.1 ± 10.2 N), and the suture technique (116,088 ± 12,169/83.0 ± 6.1 N), with significantly lower values in the latter compared to the former (p = 0.002) and no further significant differences among the techniques (p ≥ 0.329). CONCLUSION: From a biomechanical perspective, the semi-rigid technique for fixation of unstable pubic symphysis injuries demonstrated promising results with moderate to inferior behaviour compared to standard plating techniques regarding stiffness, cycles to failure and load at failure. This knowledge could lay the foundation for realization of further studies with larger sample sizes, focusing on the stabilization of the anterior pelvic ring.


Asunto(s)
Fracturas Óseas , Sínfisis Pubiana , Humanos , Sínfisis Pubiana/cirugía , Sínfisis Pubiana/lesiones , Fenómenos Biomecánicos , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Pelvis , Placas Óseas
2.
Medicina (Kaunas) ; 59(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37629669

RESUMEN

Background and purpose: Cannulated screws are standard implants for percutaneous fixa-tion of posterior pelvis ring injuries. The choice of whether to use these screws in combination with a washer is still undecided. The aim of this study was to evaluate the biomechanical competence of S1-S2 sacroiliac (SI) screw fixation with and without using a washer across three different screw designs. Material and Methods: Twenty-four composite pelvises were used and an SI joint injury type APC III according to the Young and Burgess classification was simulated. Fixation of the posterior pelvis ring was performed using either partially threaded short screws, fully threaded short screws, or fully threaded long transsacral screws. Biomechanical testing was performed under progressively increasing cyclic loading until failure, with monitoring of the intersegmental and bone-implant movements via motion tracking. Results: The number of cycles to failure and the corresponding load at failure (N) were significantly higher for the fully threaded short screws with a washer (3972 ± 600/398.6 ± 30.0) versus its counterpart without a washer (2993 ± 527/349.7 ± 26.4), p = 0.026. In contrast, these two parameters did not reveal any significant differences when comparing fixations with and without a washer using either partially threaded short of fully threaded long transsacral screws, p ≥ 0.359. Conclusions: From a biomechanical perspective, a washer could be optional when using partially threaded short or fully threaded long transsacral S1-S2 screws for treatment of posterior pelvis ring injuries in young trauma patients. Yet, the omission of the washer in fully threaded short screws could lead to a significant diminished biomechanical stability.


Asunto(s)
Técnicas Histológicas , Pelvis , Humanos , Pacientes , Programas Informáticos , Tornillos Óseos
3.
Medicina (Kaunas) ; 59(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37512026

RESUMEN

Background and Objectives: Minimally invasive surgeries for acetabulum fracture fixation are gaining popularity due to their known advantages versus open reduction and internal fixation. Antegrade or retrograde screw fixation along the long axis of the posterior column of the acetabulum is increasingly applied in surgical practice. While there is sufficient justification in the literature for the application of the anterior approach, there is a deficit of reports related to the posterior approach. The aim of this study was to evaluate the biomechanical competence of posterior column acetabulum fracture fixation through antegrade screw placement using either a standard cannulated screw or a cannulated compression headless screw (CCHS) via posterior approach. Materials and Methods: Eight composite pelvises were used, and a posterior column acetabulum fracture according to the Letournel Classification was simulated on both their left and right sides via an osteotomy. The sixteen hemi-pelvic specimens were assigned to two groups (n = 8) for either posterior column standard screw (group PCSS) or posterior column CCHS (group PCCH) fixation. Biomechanical testing was performed by applying steadily increased cyclic load until failure. Interfragmentary movements were investigated by means of motion tracking. Results: Initial stiffness demonstrated significantly higher values in PCCH (163.1 ± 14.9 N/mm) versus PCSS (133.1 ± 27.5 N/mm), p = 0.024. Similarly, cycles and load at failure were significantly higher in PCCH (7176.7 ± 2057.0 and 917.7 ± 205.7 N) versus PCSS (3661.8 ± 1664.5 and 566.2 ± 166.5 N), p = 0.002. Conclusion: From a biomechanical perspective, CCHS fixation demonstrates superior stability and could be a valuable alternative option to the standard cannulated screw fixation of posterior column acetabulum fractures, thus increasing the confidence in postoperative full weight bearing for both the patient and treating surgeon. Whether uneventful immediate postoperative full weight bearing can be achieved with CCHS fixation should primarily be investigated in further human cadaveric studies with a larger sample size.


Asunto(s)
Fracturas Óseas , Fracturas de Cadera , Fracturas de la Columna Vertebral , Humanos , Fracturas Óseas/cirugía , Acetábulo/cirugía , Fijación Interna de Fracturas , Tornillos Óseos , Fenómenos Biomecánicos
4.
J Orthop Surg Res ; 18(1): 401, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268974

RESUMEN

PURPOSE: The incidence of acetabular fractures (AFs) is increasing in all industrial nations, with posterior column fractures (PCFs) accounting for 18.5-22% of these cases. Treating displaced AFs in elderly patients is a known challenge. The optimal surgical strategy implementing open reduction and internal fixation (ORIF), total hip arthroplasty (THA), or percutaneous screw fixation (SF), remains debated. Additionally, with either of these treatment methods, the post-surgical weight bearing protocols are also ambiguous. The aim of this biomechanical study was to evaluate construct stiffness and failure load following a PCF fixation with either standard plate osteosynthesis, SF, or using a screwable cup for THA under full weight bearing conditions. METHODS: Twelve composite osteoporotic pelvises were used. A PCF according to the Letournel Classification was created in 24 hemi-pelvis constructs stratified into three groups (n = 8) as follows: (i) posterior column fracture with plate fixation (PCPF); (ii) posterior column fracture with SF (PCSF); (iii) posterior column fracture with screwable cup fixation (PCSC). All specimens were biomechanically tested under progressively increasing cyclic loading until failure, with monitoring of the interfragmentary movements via motion tracking. RESULTS: Initial construct stiffness (N/mm) was 154.8 ± 68.3 for PCPF, 107.3 ± 41.0 for PCSF, and 133.3 ± 27.5 for PCSC, with no significant differences among the groups, p = 0.173. Cycles to failure and failure load were 7822 ± 2281 and 982.2 ± 428.1 N for PCPF, 3662 ± 1664 and 566.2 ± 366.4 N for PCSF, and 5989 ± 3440 and 798.9 ± 544.0 N for PCSC, being significantly higher for PCPF versus PCSF, p = 0.012. CONCLUSION: Standard ORIF of PCF with either plate osteosynthesis or using a screwable cup for THA demonstrated encouraging results for application of a post-surgical treatment concept with a full weight bearing approach. Further biomechanical cadaveric studies with larger sample size should be initiated for a better understanding of AF treatment with full weight bearing and its potential as a concept for PCF fixation.


Asunto(s)
Fracturas Óseas , Fracturas de Cadera , Fracturas de la Columna Vertebral , Humanos , Anciano , Acetábulo/cirugía , Acetábulo/lesiones , Fracturas Óseas/cirugía , Fijación Interna de Fracturas/métodos , Soporte de Peso , Placas Óseas , Fenómenos Biomecánicos
5.
J Orthop Res ; 41(12): 2740-2748, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246496

RESUMEN

Injuries of the posterior pelvic ring are predominantly associated with osteoporosis. Percutaneously placed screws transfixing the sacroiliac joint have become the gold standard for their treatment. However, screw cut-out, backing-out, and loosening are common complications. One promising option could be cerclage reinforcement of cannulated screw fixations. Therefore, the aim of this study was to evaluate the biomechanical feasibility of posterior pelvic ring injuries fixed with S1 and S2 transsacral screws augmented with cerclage. Twenty-four composite osteoporotic pelvises with posterior sacroiliac joint dislocation were stratified into four groups for S1-S2 transsacral fixation using either (1) fully threaded screws, (2) fully threaded screws with cable cerclage, (3) fully threaded screws with wire cerclage, or (4) partially threaded screws with wire cerclage. All specimens were biomechanically tested under progressively increasing cyclic loading until failure. Intersegmental movements were monitored by motion tracking. The transsacral partially threaded screw fixation with wire cerclage augmentation resulted in significantly less combined angular intersegmental movement in the transverse and coronal plane versus its fully threaded counterpart (p = 0.032), as well as in significantly less flexion versus all other fixations (p ≤ 0.029). Additional cerclage augmentation could be performed intraoperatively to improve the stability of posterior pelvic ring injuries treated with S1-S2 transsacral screw fixation. Further investigations should follow to consolidate the current results on real bones and possibly consider execution of a clinical study.


Asunto(s)
Fijación Interna de Fracturas , Sacro , Estudios de Factibilidad , Fijación Interna de Fracturas/métodos , Sacro/cirugía , Sacro/lesiones , Tornillos Óseos , Pelvis , Fenómenos Biomecánicos
6.
Medicina (Kaunas) ; 59(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37109698

RESUMEN

Background and Objectives: Pubic ramus fractures are common in compound pelvic injuries known to have an increased rate of morbidity and mortality along with recurrent and chronic pain, impeding a patient's quality of life. The current standard treatment of these fractures is percutaneous screw fixation due to its reduced risk of blood loss and shorter surgery times. However, this is an intricate surgical technique associated with high failure rates of up to 15%, related to implant failure and loss of reduction. Therefore, the aim of this biomechanical feasibility study was to develop and test a novel intramedullary splinting implant for fixation of superior pubic ramus fractures (SPRF), and to evaluate its biomechanical viability in comparison with established fixation methods using conventional partially or fully threaded cannulated screws. Materials and Methods: A type II superior pubic ramus fracture according to the Nakatani classification was created in 18 composite hemi-pelvises via a vertical osteotomy with an additional osteotomy in the inferior pubic ramus to isolate the testing of three SPRF fixation techniques performed in 6 semi-pelvises each using either (1) a novel ramus intramedullary splint, (2) a partially threaded ramus screw, or (3) a fully threaded ramus screw. Results: No significant differences were detected among the fixation techniques in terms of initial construct stiffness and number of cycles to failure, p ≥ 0.213. Conclusion: The novel ramus intramedullary splint can be used as an alternative option for treatment of pubic ramus fractures and has the potential to decrease the rate of implant failures due to its minimally invasive implantation procedure.


Asunto(s)
Fracturas Óseas , Huesos Pélvicos , Humanos , Huesos Pélvicos/lesiones , Estudios de Factibilidad , Calidad de Vida , Fracturas Óseas/cirugía , Fijación de Fractura , Fijación Interna de Fracturas , Fenómenos Biomecánicos
7.
BMC Musculoskelet Disord ; 24(1): 215, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36949409

RESUMEN

BACKGROUND/PURPOSE: Posterior pelvis ring injuries represent typical high-energy trauma injuries in young adults. Joint stabilization with two cannulated sacroiliac (SI) screws at the level of sacral vertebrae S1 and S2 is a well-established procedure. However, high failure- and implant removal (IR) rates have been reported. Especially, the washer recovery can pose the most difficult part of the IR surgery, which is often associated with complications. The aim of this biomechanical study was to evaluate the stability of S1-S2 fixation of the SI joint using three different screw designs. METHODS: Eighteen artificial hemi-pelvises were assigned to three groups (n = 6) for SI joint stabilization through S1 and S2 corridors using either two 7.5 mm cannulated compression headless screws (group CCH), two 7.3 mm partially threaded SI screws (group PT), or two 7.3 mm fully threaded SI screws (group FT). An SI joint dislocation injury type III APC according to the Young and Burgess classification was simulated before implantation. All specimens were biomechanically tested to failure in upright standing position under progressively increasing cyclic loading. Interfragmentary and bone-implant movements were captured via motion tracking and evaluated at four time points between 4000 and 7000 cycles. RESULTS: Combined interfragmentary angular displacement movements in coronal and transverse plane between ilium and sacrum, evaluated over the measured four time points, were significantly bigger in group FT versus both groups CCH and PT, p ≤ 0.047. In addition, angular displacement of the screw axis within the ilium under consideration of both these planes was significantly bigger in group FT versus group PT, p = 0.038. However, no significant differences were observed among the groups for screw tip cutout movements in the sacrum, p = 0.321. Cycles to failure were highest in group PT (9885 ± 1712), followed by group CCH (9820 ± 597), and group FT (7202 ± 1087), being significantly lower in group FT compared to both groups CCH and PT, p ≤ 0.027. CONCLUSION: From a biomechanical perspective, S1-S2 SI joint fixation using two cannulated compression headless screws or two partially threaded SI screws exhibited better interfragmentary stability compared to two fully threaded SI screws. The former can therefore be considered as a valid alternative to standard SI screw fixation in posterior pelvis ring injuries. In addition, partially threaded screw fixation was associated with less bone-implant movements versus fully threaded screw fixation. Further human cadaveric biomechanical studies with larger sample size should be initiated to understand better the potential of cannulated compression headless screw fixation for the therapy of the injured posterior pelvis ring in young trauma patients.


Asunto(s)
Fracturas Óseas , Luxaciones Articulares , Humanos , Fijación Interna de Fracturas , Tornillos Óseos , Fracturas Óseas/cirugía , Luxaciones Articulares/cirugía , Sacro/cirugía , Pelvis , Fenómenos Biomecánicos
8.
J Shoulder Elbow Surg ; 32(5): 1079-1087, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36737031

RESUMEN

BACKGROUND: Coronoid fractures frequently occur as part of complex elbow injuries and account for 2%-15% of the cases with dislocations. Comminuted fractures and nonunions necessitate surgical treatment. Considering the latest technological advancements, the aim of this study was to investigate the fixation strength of coronoid replacement using an individualized 3D printed prosthesis with curved cemented intramedullary (IM) stem vs. both radial head grafted reconstruction and coronoid fixation. METHODS: Twenty-four human cadaveric paired forearms were stripped of soft tissue and their computed tomography scanned ulnas were randomized to 4 groups for coronoid replacement (prosthesis group), radial head grafted reconstruction (radial head group), fixation (fixation group), or no treatment (intact group). The ulnas in all groups, except the intact one, were osteotomized at 40% of the coronoid height and the coronoid process was either replaced with a 3D printed stainless-steel prosthesis with curved cemented IM stem individually designed based on the contralateral scan (prosthesis group), reconstructed with an ipsilateral radial head autograft fixed with 2 anteroposterior screws (radial head group), or fixed in situ with 2 anteroposterior screws (fixation group). All specimens were biomechanically tested under ramped quasistatic axial loading. RESULTS: Bone mineral density was not significantly different among the groups (P = .95). Stiffness and failure load in the prosthesis group was significantly higher compared to all other groups (P ≤ .04) and in addition, it was significantly lower in the fixation group compared to the intact group (P = .03), with no further detected significant differences among the groups (P ≥ .72). Absorbed energy to failure in the prosthesis group was significantly more compared to both radial head and fixation groups (P ≤ .04) but not vs. the intact group. Failure deformation at the osteotomy site was not significantly different among the groups (P = .26). CONCLUSIONS: Coronoid process replacement using an anatomically shaped, individually designed 3D printed prosthesis with curved cemented IM stem seems to be an effective method to restore the coronoid buttress function under axial loading. This method provides superior fixation strength over both radial head grafted reconstruction and screw fixation.


Asunto(s)
Articulación del Codo , Fracturas del Radio , Humanos , Articulación del Codo/cirugía , Implantación de Prótesis , Cúbito/cirugía , Fijación Interna de Fracturas/métodos , Tornillos Óseos , Impresión Tridimensional , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía , Fenómenos Biomecánicos
9.
J Orthop Res ; 41(3): 641-648, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35735256

RESUMEN

To biomechanically evaluate the stability of a diaphyseal anchored, cementless stem in presence of a proximal periprosthetic femoral medial wall defect compared to the stability of the same stem in an intact femur. Twenty-two paired human cadaveric femora were pairwise assigned either to a fracture group, featuring a proximal medial wall defect involving 40% of the stems medial anchorage distance, or a control group with native specimens. The specimens were tested under a monotonically increasing cyclic axial loading protocol. Load, cycles, and multiples of the respective body weight at implant loosening was measured. Mean initial stiffness was 2243.9 ± 467.9 N/mm for the intact group and 2190.1 ± 474.8 N/mm for the fracture group. Mean load to loosening in the intact group was 3210.5 ± 1073.2 N and 2543.6 ± 576.4 N in the fracture group, with statistical significance. Mean cycles to loosening in the intact group were 27104.9 ± 10731.7 and 20431.5 ± 5763.7 in the fracture group, with statistical significance. Mean multiples of the resulting body weight at loosening in the intact group was 548.3 ± 158.5% and 441.4 ± 104% in the fracture group, with statistical significance. A medial wall defect involving 40% of the medial anchorage distance significantly decreases the axial stability of a diaphyseal anchored stem. However, mechanical failure occurred beyond physiological stress. At loosening rates of about 4 multiples of the body weight in the fracture group, a "safe zone" remains of a 0.5-fold body weight for maximum loads and twofold body weights for average loads.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Fracturas del Fémur , Prótesis de Cadera , Fracturas Periprotésicas , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Diseño de Prótesis , Fémur/cirugía , Reoperación , Fracturas del Fémur/cirugía
10.
Sci Rep ; 12(1): 9357, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672426

RESUMEN

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ). Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition. Foot positioning had a significant effect on DTFJ configuration. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by - 0.81° (SD 0.69°) in internal rotation only. Foot positioning noticeably influences the measurements when evaluating DTFJ configuration. Loading seems to have no relevant effect on native ankles in neutral position.


Asunto(s)
Traumatismos del Tobillo , Articulación del Tobillo , Tobillo/diagnóstico por imagen , Articulación del Tobillo/diagnóstico por imagen , Fenómenos Biomecánicos , Cadáver , Peroné , Humanos , Soporte de Peso
11.
Eur J Trauma Emerg Surg ; 48(4): 3305-3315, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35254460

RESUMEN

PURPOSE: The aim of this study was to assess the biomechanical performance of different screw configurations for fixation of Sanders type II B joint-depression calcaneal fractures. METHODS: Fifteen human cadaveric lower limbs were amputated and Sanders II B fractures were simulated. The specimens were randomized to three groups for fixation with different screw configurations. The calcanei in Group 1 were treated with two parallel longitudinal screws, entering superiorly the Achilles tendon insertion, and two screws fixing the intraarticular posterior facet fracture line. In Group 2 two screws entered the tuberosity inferiorly to the Achilles tendon insertion and two transverse screws fixed the posterior facet. In Group 3 two screws were inserted along the bone axis, one transverse screw fixed the posterior facet and one oblique screw was inserted from the posteroplantar part of the tuberosity supporting the posterolateral part of the posterior facet. All specimens were biomechanically tested to failure under progressively increasing cyclic loading. RESULTS: Initial stiffness did not differ significantly between the groups, P = 0.152. Cycles to 2 mm plantar movement were significantly higher in both Group 1 (15,847 ± 5250) and Group 3 (13,323 ± 4363) compared with Group 2 (4875 ± 3480), P ≤ 0.048. No intraarticular displacement was observed in any group during testing. CONCLUSIONS: From a biomechanical perspective, posterior facet support by means of buttress or superiorly inserted longitudinal screws results in less plantar movement between the calcaneal tuberosity and the anterior fragments. Inferiorly inserted longitudinal screws are associated with bigger interfragmentary movements.


Asunto(s)
Traumatismos del Tobillo , Fracturas Óseas , Fracturas Intraarticulares , Traumatismos de la Rodilla , Fenómenos Biomecánicos , Tornillos Óseos , Cadáver , Depresión , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Humanos , Fracturas Intraarticulares/cirugía
12.
Eur J Trauma Emerg Surg ; 48(5): 3961-3967, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35199184

RESUMEN

PURPOSE: Pathologies of the medial talus (e.g., fractures, tarsal coalitions) can lead to symptomatic problems such as pain and nonunion. Bony resection may be a good solution for both. It is unclear how much of the medial talus can be taken before the subtalar joint becomes unstable. The aim of this study was to evaluate the effect a limited resection of the medial talar facet and the anteromedial portion of the posterior talar facet has on subtalar stability. METHODS: Eight fresh-frozen human cadaveric lower limbs were mounted in a frame for simulated weight-bearing. Computed tomography scans were obtained under 700 N single-legged stance loading, with the foot in neutral, 15° inversion, and 15° eversion positions. A sequential resection of 10, 20, and 30% of the medial facet and the anteromedial portion of the posterior talar facet to the calcaneus, based on the intact talus width, was performed. Measurements of subtalar vertical angulation, talar subluxation, coronal posterior facet angle and talocalcaneal (Kite) angle in the anteroposterior and lateral view were performed. RESULTS: Gross clinical instability was not observed in any of the specimens. No significant differences were detected in the measurements between the resected and intact states (P ≥ 0.10) as well as among the resected states (P ≥ 0.11). CONCLUSION: In a biomechanical setting, resecting up to 30% of the medial facet and anteromedial portion of the posterior facet based on the intact talus width-does not result in any measurable instability of the subtalar joint in presence of intact ligamentous structures. LEVEL OF EVIDENCE: V.


Asunto(s)
Luxaciones Articulares , Articulación Talocalcánea , Astrágalo , Humanos , Dolor , Articulación Talocalcánea/diagnóstico por imagen , Articulación Talocalcánea/cirugía , Astrágalo/diagnóstico por imagen , Astrágalo/cirugía , Tomografía Computarizada por Rayos X , Soporte de Peso
13.
BMC Musculoskelet Disord ; 23(1): 35, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986819

RESUMEN

Complex intraarticular distal radius fractures (DRFs), commonly managed with volar locking plates, are challenging. Combined volar and dorsal plating is frequently applied for treatment, however, biomechanical investigations are scant. The aim of this biomechanical study was to investigate volar plating versus double plating in DRFs with different degrees of lunate facet comminution.Thirty artificial radii with simulated AO/OTA 23-C2.1 and C3.1 DRFs, including dorsal defect and lunate facet comminution, were assigned to 3 groups: Group 1 with two equally-sized lunate facet fragments; Group 2 with small dorsal and large volar fragment; Group 3 with three equally-sized fragments. The specimens underwent volar and double locked plating and non-destructive ramped loading in 0° neutral position, 40° flexion and 40° extension.In each tested position, stiffness: (1) did not significantly differ among groups with same fixation method (p ≥ 0.15); (2) increased significantly after supplemental dorsal plating in Group 2 and Group 3 (p ≤ 0.02).Interfragmentary displacements between styloid process and lunate facet in neutral position were below 0.5 mm, being not significantly different among groups and plating techniques (p ≥ 0.63).Following volar plating, angular displacement of the lunate facet to radius shaft was significantly lower in Group 1 versus both Group 2 and Group 3 (p < 0.01). It decreased significantly after supplemental dorsal plating in Group 2 and Group 3 (p < 0.01), but not in Group 1 (p ≥ 0.13), and did not differ significantly among the three groups after double plating (p ≥ 0.74).Comminution of the lunate facet within its dorsal third significantly affected the biomechanical outcomes related to complex intraarticular DRFs treated with volar and double locked plates.Double plating demonstrates superior stability versus volar plating only for lunate facet comminution within its dorsal third. In contrast, volar plating could achieve stability comparable with double plating when the dorsal third of the lunate facet is not separated by the fracture pattern. Both fixation methods indicated achievable absolute stability between the articular fragments.


Asunto(s)
Fracturas Conminutas , Hueso Semilunar , Fracturas del Radio , Fenómenos Biomecánicos , Placas Óseas , Fijación Interna de Fracturas , Humanos , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía
14.
Arch Orthop Trauma Surg ; 142(12): 3787-3796, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34748055

RESUMEN

BACKGROUND: Recently, two novel concepts for intramedullary nailing of trochanteric fractures using a helical blade or interlocking dual screws have demonstrated advantages as compared to standard single-screw systems. However, these two concepts have not been subjected to a direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone quality (1) the biomechanical competence of nailing with the use of a helical blade versus interlocking screws, and (2) the effect of cement augmentation on the fixation strength of the helical blade. METHODS: Twelve osteoporotic and osteopenic human cadaveric femoral pairs were assigned for pairwise implantation using either a short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element or a short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with interlocking screws. Six osteoporotic femora, implanted with TFNA, were augmented with bone cement. Four groups were created: group 1 (TFNA) paired with group 2 (InterTAN), both consisting of osteopenic specimens, and group 3 (TFNA augmented) paired with group 4 (InterTAN), both consisting of osteoporotic specimens. An unstable trochanteric AO/OTA 31-A2.2 fracture was simulated and all specimens were tested until failure under progressively increasing cyclic loading. RESULTS: Stiffness in group 3 was significantly higher versus group 4, p = 0.03. Varus (°) and femoral head rotation around the femoral neck axis (°) after 10,000 cycles were 1.9 ± 1.0/0.3 ± 0.2 in group 1, 2.2 ± 0.7/0.7 ± 0.4 in group 2, 1.5 ± 1.3/0.3 ± 0.2 in group 3 and 3.5 ± 2.8/0.9 ± 0.6 in group 4, being significantly different between groups 3 and 4, p = 0.04. Cycles to failure and failure load (N) at 5° varus or 10° femoral head rotation around the neck axis in groups 1-4 were 21,428 ± 6020/1571.4 ± 301.0, 20,611 ± 7453/1530.6 ± 372.7, 21,739 ± 4248/1587.0 ± 212.4 and 18,622 ± 6733/1431.1 ± 336.7, being significantly different between groups 3 and 4, p = 0.04. CONCLUSIONS: Nailing of trochanteric femoral fractures with use of helical blades is comparable to interlocking dual screws fixation in femoral head fragments with low bone quality. Bone cement augmentation of helical blades provides significantly greater fixation strength compared to interlocking screws constructs.


Asunto(s)
Fijación Intramedular de Fracturas , Fracturas de Cadera , Humanos , Tornillos Óseos , Cementos para Huesos , Uñas , Cadáver , Fracturas de Cadera/cirugía , Clavos Ortopédicos , Fenómenos Biomecánicos
15.
Sci Rep ; 11(1): 17153, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433855

RESUMEN

The reamer-irrigator-aspirator (RIA) technique allows to collect large bone graft amounts without the drawbacks of iliac crest harvesting. Nevertheless, clinical cases with occurrence of femur fractures have been reported. Therefore, this study aimed to systematically investigate the three-dimensional geometry of the reamed bone as a function of the reaming diameter and its influence on the associated potential fracture pattern. Forty-five intact fresh-frozen human cadaveric femora underwent computed tomography (CT). They were randomized to three groups (n = 15) for reaming at a diameter of either 1.5 mm (Group 1), 2.5 mm (Group 2) or 4.0 mm (Group 3) larger than their isthmus using RIA. Reaming was followed by a second CT scan, biomechanical testing until failure and a third CT scan. All CT scans of each femur were aligned via rigid registration, and fracture lines were visualized. Subsequently, a decrease in wall thickness, cross-sectional area, and harvested bone volume have been evaluated. The total volume of the bone graft was significantly higher for Group 3 (7.8 ± 2.9 ml) compared to Group 1 (2.9 ± 1.1 ml) and Group 2 (3.0 ± 1.1 ml). The maximal relative decrease of the wall thickness was located medially (72.7%) in the third (61.4%), fourth (18.2%) and second (9.1%) eighth for all groups. As the diameter of the reaming increased, an overlap of the fracture line with the maximal relative decrease in wall thickness and a maximal average relative decrease of the cross-sectional area became more frequent. This suggests that a reaming-associated fracture is most likely to occur in this region.


Asunto(s)
Trasplante Óseo/métodos , Fémur/citología , Imagenología Tridimensional/métodos , Recolección de Tejidos y Órganos/métodos , Adulto , Anciano , Fémur/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Succión/métodos , Tomografía Computarizada por Rayos X/métodos
16.
J Clin Med ; 10(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073570

RESUMEN

BACKGROUND: Incidence of pelvic ring fractures has increased over the past four decades, especially after low-impact trauma-classified as fragility fractures of the pelvis (FFP). To date, there is a lack of biomechanical evidence for the superiority of one existing fixation techniques over another. An FFP type IIc was simulated in 50 artificial pelvises, assigned to 5 study groups: Sacroiliac (SI) screw, SI screw plus supra-acetabular external fixator, SI screw plus plate, SI screw plus retrograde transpubic screw, or S1/S2 ala-ilium screws. The specimens were tested under progressively increasing cyclic loading. Axial stiffness and cycles to failure were analysed. Displacement at the fracture sites was evaluated, having been continuously captured via motion tracking. RESULTS: Fixation with SI screw plus plate and SI screw plus retrograde transpubic screw led to higher stability than the other tested techniques. The S1/S2 ala-ilium screws were more stable than the SI screw or the SI screw plus external fixator. CONCLUSIONS: In cases with displaced fractures, open reduction and plate fixation provides the highest stability, whereas in cases where minimally invasive techniques are applicable, a retrograde transpubic screw or S1/S2 ala-ilium screws can be considered as successful alternative treatment options.

17.
J Orthop Surg Res ; 16(1): 216, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761965

RESUMEN

BACKGROUND: A detailed understanding of scaphoid anatomy helps anatomic fracture reduction, and optimal screw position. Therefore, we analysed (1) the size and shape variations of the cartilage and osseous surface, (2) the distribution of volumetric bone mineral density (vBMD) and (3) if the vBMD values differ between a peripheral and a central screw pathway? METHODS: Forty-three fresh frozen hand specimens (17 females, 26 males) were analysed with high-resolution peripheral quantitative computed tomography (HR-pQCT) and dissected to compute a 3D-statistical osseous and cartilage surface model and a 3D-averaged vBMD model of the scaphoid. 3D patterns were analysed using principal component analysis (PCA). vBMD was analysed via averaging HR-pQCT grey values and virtual bone probing along a central and peripheral pathway. RESULTS: (1) PCA displayed most notable variation in length ranging from 1.7 cm (- 2SD) to 2.6 cm (mean) and 3.7 cm (+ 2SD) associated with differences of the width and configuration of the dorsal surface (curved and narrow (4 mm) to a wider width (9 mm)). (2) High vBMD was located in the peripheral zone. Lowest vBMD was observed in the centre and waist. (3) Virtual probing along a peripheral pathway near to the cartilage surfaces for the capitate and lunate allowed the center region to be bypassed, resulting in increased vBMD compared to a central pathway. CONCLUSION: High anatomical variations regarding the osseous and cartilage surfaces were associated with three distinct concentrically arranged zones with notable different vBMD. The complex scaphoid anatomy with its waist might alter the strategy of fracture fixation, education and research.


Asunto(s)
Densidad Ósea , Tornillos Óseos , Fijación de Fractura/métodos , Imagenología Tridimensional , Hueso Escafoides/anatomía & histología , Hueso Escafoides/cirugía , Tomografía Computarizada por Rayos X/métodos , Femenino , Humanos , Masculino , Hueso Escafoides/diagnóstico por imagen , Hueso Escafoides/metabolismo
18.
Biomed Res Int ; 2021: 6649712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748273

RESUMEN

BACKGROUND: Minimally invasive plate osteosynthesis (MIPO) is one of the generally accepted surgical techniques for the treatment of humeral shaft fractures. However, despite the high bone union rate, a variety of complications are still prevailing. Moreover, the current literature lacks data comparing the anterolateral MIPO approach using dynamic compression plates accommodating different numbers of screws. The aim of this study was to analyze the biomechanical performance of comminuted humeral shaft fractures fixed with dynamic compression plates using either two or three screws per fragment. METHODS: Six pairs of fresh-frozen human cadaveric humeri from donors aged 66.8 ± 5.2 years were randomized to two paired study groups for simulation of bridge-plated comminuted shaft fracture type AO/OTA 12-C1/2/3 without interfragmentary bony support, using a dynamic compression plate positioned on the anterolateral surface and fixed with two (group 1) or three (group 2) screws per fragment. All specimens underwent nondestructive quasistatic biomechanical testing under lateral bending, anterior bending, axial bending, and torsion in internal rotation, followed by progressively increasing cyclic torsional loading in internal rotation until failure. RESULTS: Initial stiffness of the plated specimens in lateral bending, anterior bending, axial bending, and torsion was not significantly different between the groups (P ≥ 0.22). However, cycles to 10°, 15°, and 20° torsional deformation and cycles to construct failure were significantly higher in group 2 compared with group 1 (P ≤ 0.03). CONCLUSIONS: From a biomechanical perspective, no significant superiority is identified in terms of primary stability when using two or three screws per fragment for bridge compression plating of comminuted humeral shaft fractures. However, three-screw configurations provide better secondary stability and maintain it with a higher resistance towards loss of reduction under dynamic loading. Therefore, the use of a third screw may be justified when such better secondary stability is required.


Asunto(s)
Placas Óseas , Tornillos Óseos , Fijación Interna de Fracturas , Fracturas del Húmero , Húmero , Diseño de Prótesis , Anciano , Cadáver , Femenino , Humanos , Fracturas del Húmero/patología , Fracturas del Húmero/cirugía , Húmero/patología , Húmero/cirugía , Masculino , Persona de Mediana Edad
19.
Acta Biomater ; 125: 322-332, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631396

RESUMEN

Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.


Asunto(s)
Tinta , Andamios del Tejido , Fosfatos de Calcio , Impresión Tridimensional , Solventes , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...