Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687678

RESUMEN

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.


Asunto(s)
Membrana Celular , Proteínas de la Membrana , Proteínas Proto-Oncogénicas c-ret , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Membrana Celular/metabolismo , Transducción de Señal , Transporte de Proteínas , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proliferación Celular , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología
2.
Lancet Reg Health Am ; 31: 100693, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38500962

RESUMEN

Background: Ritonavir-boosted Nirmatrelvir (NMV-r), a protease inhibitor with in vitro activity against SARS-CoV-2, can reduce risk of progression to severe COVID-19 among high-risk individuals infected with earlier variants, but less is known about its effectiveness against omicron variants BQ.1/BQ.1.1/XBB.1.5. We sought to evaluate effectiveness of NMV-r in BQ.1/BQ.1.1/XBB.1.5 omicron variants by comparing hospitalisation rates to NMV-r treated patients during a previous omicron phase and to contemporaneous untreated patients. Methods: We conducted a retrospective observational cohort study of non-hospitalised adult patients with SARS-CoV-2 infection using real-world data from three health systems in Colorado and Utah, and compared hospitalisation rates in NMV-r-treated patients in a BA.2/BA.2.12.1/BA.4/BA.5 variant-predominant (first) phase (April 3, 2022-November 12, 2022), with a BQ.1/BQ.1.1/XBB.1.5 variant-predominant (second) phase (November 13, 2022-March 7, 2023). In the primary analysis, we used Firth logistic regression with a two-segment (phase) linear time model, and pre-specified non-inferiority bounds for the mean change between segments. In a pre-specified secondary analysis, we inferred NMV-r effectiveness in a cohort of treated and untreated patients infected during the second phase. For both analyses, the primary outcome was 28-day all-cause hospitalisation. Subgroup analyses assessed treatment effect heterogeneity. Findings: In the primary analysis, 28-day all-cause hospitalisation rates in NMV-r treated patients in the second phase (n = 12,061) were non-inferior compared to the first phase (n = 25,075) (198 [1.6%] vs. 345 [1.4%], adjusted odds ratio (aOR): 0.76 [95% CI 0.54-1.06]), with consistent results among secondary endpoints and key subgroups. Secondary cohort analyses revealed additional evidence for NMV-r effectiveness, with reduced 28-day hospitalisation rates among treated patients compared to untreated patients during a BQ.1/BQ.1.1/XBB.1.5 predominant phase (198/12,061 [1.6%] vs. 376/10,031 [3.7%], aOR 0.34 [95% CI 0.30-0.38), findings robust to additional sensitivity analyses. Interpretation: Real-world evidence from major US healthcare systems suggests ongoing NMV-r effectiveness in preventing hospitalisation during a BQ.1/BQ.1.1/XBB.1.5-predominant phase in the U.S, supporting its continued use in similar patient populations. Funding: U.S. National Institutes of Health.

3.
Biotechnol Prog ; : e3434, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334252

RESUMEN

Chromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. For clinical manufacturing, this can result in resin being used only for a fraction of its potential lifetime. Extending the use of resins to multiple products can significantly reduce resin waste and cost. It can also improve manufacturing flexibility in case of raw material shortage during times such as the COVID-19 pandemic. The work presented herein describes an overarching multiproduct resin reuse (MRR) strategy, which includes a risk assessment, strategic planning, small-scale feasibility runs, and the successful execution of the MRR strategy to support Good manufacturing practice (GMP) clinical manufacturing of an antibody-based therapeutic. Specifically, an anion exchange (AEX) and cation exchange (CEX) MRR strategy is described. Clearance of carryover biological product is demonstrated by first cleaning the AEX and CEX manufacturing columns with sodium hydroxide to ensure inactivation and degradation of the carryover protein and followed by a blank buffer elution that is tested using various analytical methodologies to ensure reduction of the carryover protein to an acceptable level. To our knowledge, this is the first time an MRR approach has been successfully implemented and submitted to health authorities to support biologic GMP clinical manufacture.

4.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37425958

RESUMEN

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTK) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumour pheochromocytoma (PCC) can be caused by activating mutations of the RET receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumour suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability, and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

5.
J Am Soc Mass Spectrom ; 35(1): 62-73, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38032172

RESUMEN

Surface-embedded glycoproteins, such as the spike protein trimers of coronaviruses MERS, SARS-CoV, and SARS-CoV-2, play a key role in viral function and are the target antigen for many vaccines. However, their significant glycan heterogeneity poses an analytical challenge. Here, we utilized individual ion mass spectrometry (I2MS), a multiplexed charge detection measurement with similarities to charge detection mass spectrometry (CDMS), in which a commercially available Orbitrap analyzer is used to directly produce mass profiles of these heterogeneous coronavirus spike protein trimers under native-like conditions. Analysis by I2MS shows that glycosylation contributes to the molecular mass of each protein trimer more significantly than expected by bottom-up techniques, highlighting the importance of obtaining complementary intact mass information when characterizing glycosylation of such heterogeneous proteins. Enzymatic dissection to remove sialic acid or N-linked glycans demonstrates that I2MS can be used to better understand the glycan profile from a native viewpoint. Deglycosylation of N-glycans followed by I2MS analysis indicates that the SARS-CoV-2 spike protein trimer contains glycans that are more difficult to remove than its MERS and SARS-CoV counterparts, and these differences are correlated with solvent accessibility. I2MS technology enables characterization of protein mass and intact glycan profile and is orthogonal to traditional mass analysis methods such as size exclusion chromatography-multiangle light scattering (SEC-MALS) and field flow fractionation-multiangle light scattering (FFF-MALS). An added advantage of I2MS is low sample use, requiring 100-fold less than other methodologies. This work highlights how I2MS technology can enable efficient development of vaccines and therapeutics for pharmaceutical development.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus , Vacunas , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Espectrometría de Masas/métodos , Polisacáridos/análisis
6.
Pharm Res ; 40(12): 3087-3098, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37936013

RESUMEN

PURPOSE: Monoclonal antibodies (mAbs), like other protein therapeutics, are prone to various forms of degradation, some of which are difficult to distinguish from the native form yet may alter potency. A generalizable LC-MS approach was developed to enable quantitative analysis of isoAsp. In-depth understanding of product quality attributes (PQAs) enables optimization of the manufacturing process, better formulation selection, and decreases risk associated with product handling in the clinic or during shipment. METHODS: Reversed-phase chromatographic peak splitting was observed when a mAb was exposed to elevated temperatures. Multiple LC-MS based methods were applied to identify the reason for peak splitting. The approach involved the use of complementary HPLC columns, multiple enzymatic digestions and different MS/MS ion dissociation methods. In addition, mAb potency was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: The split peaks had identical masses, and the root cause of the peak splitting was identified as isomerization of an aspartic acid located in the complementarity-determining region (CDR) of the light chain. And the early eluting and late eluting peaks were collected and performed enzymatic digestion to confirm the isoAsp enrichment in the early eluting peak. In addition, decreased potency was observed in the same heat-stressed sample, and the increased isoAsp levels in the CDR correlate well with a decrease of potency. CONCLUSION: Liquid chromatography-mass spectrometry (LC-MS) has been utilized extensively to assess PQAs of biological therapeutics. In this study, a generalizable LC-MS-based approach was developed to enable identification and quantitation of the isoAsp-containing peptides.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Anticuerpos Monoclonales/química , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Regiones Determinantes de Complementariedad/química
7.
Proc Biol Sci ; 290(2009): 20231895, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37848064

RESUMEN

An intense public debate has fuelled governmental bans on marine mammals held in zoological institutions. The debate rests on the assumption that survival in zoological institutions has been and remains lower than in the wild, albeit the scientific evidence in support of this notion is equivocal. Here, we used statistical methods previously applied to assess historical improvements in human lifespan and data on 8864 individuals of four marine mammal species (harbour seal, Phoca vitulina; California sea lion, Zalophus californianus; polar bear, Ursus maritimus; common bottlenose dolphin, Tursiops truncatus) held in zoos from 1829 to 2020. We found that life expectancy increased up to 3.40 times, and first-year mortality declined up to 31%, during the last century in zoos. Moreover, the life expectancy of animals in zoos is currently 1.65-3.55 times longer than their wild counterparts. Like humans, these improvements have occurred concurrently with advances in management practices, crucial for population welfare. Science-based decisions will help effective legislative changes and ensure better implementation of animal care.


Asunto(s)
Delfín Mular , Caniformia , Phoca , Leones Marinos , Ursidae , Animales , Humanos , Longevidad , Cetáceos
8.
Ann Surg Open ; 4(1): e260, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37600898

RESUMEN

Background: Surgeon productivity is measured in relative value units (RVUs). The feasibility of attaining RVU productivity targets requires surgeons to have enough allocated block time to generate RVUs. However, it is unknown how much block time is required for surgeons to attain specific RVU targets. We aimed to estimate the effect of surgeon and practice environment characteristics (SPECs) on block time needed to attain fixed RVU targets. Methods: We computationally simulated individual surgeons' annual caseloads under a variety of SPECs in the following way. First, empirical case data were sampled from ACS NSQIP in accordance with surgeon specialty, case-mix complexity, and RVU target. Surgeons' operating schedules were then constructed according to the block length, turnover time, and scheduling flexibility of the practice environment. These 6 SPECs were concurrently varied over their ranges for a 6-way sensitivity analysis. Results: Annual operating schedules for 60,000,000 surgeons were simulated. The number of blocks required to attain RVU targets varied significantly with surgeon specialty and increased with increased case-mix complexity, increased turnover time, and decreased scheduling flexibility. Intraspecialty variation in block requirement with variation in environmental characteristics exceeded interspecialty variation with fixed environmental characteristics. Multivariate linear models predicted block utilization across surgical specialties with consideration for the stated factors. An online tool is shared with which to apply these results to one's particular practice. Conclusions: Block time required to attain RVU targets varies widely with SPECs; intraspecialty variation exceeds interspecialty variation. The feasibility of attaining RVU targets requires alignment between targets and allocated operating time with consideration for surgical specialty and other practice conditions.

9.
Chemistry ; 29(56): e202301813, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452377

RESUMEN

Cyclic peptides have been excellent source of drug leads. With the advances in discovery platforms, the pharmaceutical industry has a growing interest in cyclic peptides and has pushed several into clinical trials. However, structural complexity of cyclic peptides brings extreme challenges for structure elucidation efforts. Isotopic fine structure analysis, Nuclear magnetic resonance (NMR), and detailed tandem mass spectrometry rapidly provided peptide sequence for streptnatamide A, a cyclic peptide isolated from a marine-derived Streptomyces sp. Marfey's analysis determined the stereochemistry of all amino acids, enabling the unambiguous structure determination of this compound. A non-ribosomal peptide synthetase biosynthetic gene cluster (stp) was tentatively identified and annotated for streptnatamide A based on the in silico analysis of whole genome sequencing data. These analytical tools will be powerful tools to overcome the challenges for cyclic peptide structure elucidation and accelerate the development of bioactive cyclic peptides.


Asunto(s)
Péptidos Cíclicos , Streptomyces , Péptidos Cíclicos/química , Streptomyces/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Espectrometría de Masas en Tándem/métodos
10.
Brain Commun ; 5(3): fcad130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324243

RESUMEN

Studies of post-mortem human tissue provide insight into pathological processes, but are inherently limited by practical considerations that limit the scale at which tissue can be examined, and the obvious issue that the tissue reflects only one time point in a continuous disease process. We approached this problem by adapting new tissue clearance techniques to an entire cortical area of human brain, which allows surveillance of hundreds of thousands of neurons throughout the depth of the entire cortical thickness. This approach allows detection of 'rare' events that may be difficult to detect in standard 5 micrometre-thick paraffin sections. For example, it is well established that neurofibrillary tangles begin within a neuron, and ultimately, in at least some instances, persist in the brain even after the neuron has died. These are referred to as 'ghost tangles', a term that appropriately implies their 'difficult to see' ephemeral qualities. We set out to find ghost tangles as one example of the power of the tissue clearance/image analysis techniques to detect rare events, and to learn what happens at the end-point of a tangle's life history. We were able to identify 8103 tau tangles, 132 465 neurons and 299 640 nuclei in tissue samples from three subjects with severe Alzheimer's disease (Braak V-VI) and 4 tau tangles, 200 447 neurons and 462 715 nuclei in tissue samples from three subjects with no significant tau pathology (Braak 0-I). Among these data, we located 57 ghost tangles, which makes them only 0.7% of the total tau tangles observed. We found that ghost tangles are more likely to be found in cortical layers 3 and 5 (49/57), with a select few scattered across other layers 1, 2, 4 and 6. This ability to find rare events, such as ghost tangles, in large enough quantities to statistically test their distribution exemplifies how tissue clearing can be used as a powerful tool for studying selective vulnerability or resilience to pathology across brain regions.

11.
MAbs ; 15(1): 2199466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032437

RESUMEN

Transition metals can be introduced in therapeutic protein drugs at various steps of the manufacturing process (e.g. manufacturing raw materials, formulation, storage), and can cause a variety of modifications on the protein. These modifications can potentially influence the efficacy, safety, and stability of the therapeutic protein, especially if critical quality attributes (CQAs) are affected. Therefore, it is meaningful to understand the interactions between proteins and metals that can occur during the manufacturing process, formulation, and storage of biotherapeutics. Here, we describe a novel strategy to differentiate between ultra-trace levels of transition metals (cobalt, chromium, copper, iron, and nickel) interacting with therapeutic proteins and free metal in solution in the drug formulation using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Two monoclonal antibodies (mAbs) were coformulated and stored up to nine days in a scaled down model to mimic metal exposure from manufacturing tanks. The samples containing the mAbs were first analyzed by ICP-MS for bulk metal analysis, then studied using SEC-ICP-MS to measure the extent of metal-protein interactions. The SEC separation was used to differentiate metal associated with the mAbs from free metal in solution. Relative quantitation of metal-protein interaction was then calculated using the relative peak areas of protein-associated metal to free metal in solution and weighting it to the total metal concentration in the mixture as measured by bulk metal analysis by ICP-MS. The SEC-ICP-MS method offers an informative means of measuring metal-protein interactions during drug development.


Asunto(s)
Anticuerpos Monoclonales , Metales , Espectrometría de Masas/métodos , Metales/análisis , Cobre/análisis , Cobre/metabolismo , Hierro
12.
Pharm Res ; 40(6): 1411-1423, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36627449

RESUMEN

PURPOSE: Succinimide formation and isomerization alter the chemical and physical properties of aspartic acid residues in a protein. Modification of aspartic acid residues within complementarity-determining regions (CDRs) of therapeutic monoclonal antibodies (mAbs) can be particularly detrimental to the efficacy of the molecule. The goal of this study was to characterize the site of succinimide accumulation in the CDR of a therapeutic mAb and understand its effects on potency. Furthermore, we aimed to mitigate succinimide accumulation through changes in formulation. METHODS: Accumulation of succinimide was identified through intact and reduced LC-MS mass measurements. A low pH peptide mapping method was used for relative quantitation and localization of succinimide formation in the CDR. Statistical modeling was used to correlate levels of succinimide with basic variants and potency measurements. RESULTS: Succinimide accumulation in Formulation A was accelerated when stored at elevated temperatures. A strong correlation between succinimide accumulation in the CDR, an increase in basic charge variants, and a decrease in potency was observed. Statistical modeling suggest that a combination of ion exchange chromatography and potency measurements can be used to predict succinimide levels in a given sample. Reformulation of the mAb to Formulation B mitigates succinimide accumulation even after extended storage at elevated temperatures. CONCLUSION: Succinimide formation in the CDR of a therapeutic mAb can have a strong negative impact on potency of the molecule. We demonstrate that thorough characterization of the molecule by LC-MS, ion exchange chromatography, and potency measurements can facilitate changes in formulation that mitigate succinimide formation and the corresponding detrimental changes in potency.


Asunto(s)
Ácido Aspártico , Regiones Determinantes de Complementariedad , Regiones Determinantes de Complementariedad/química , Anticuerpos Monoclonales/química , Espectrometría de Masas , Succinimidas/química
13.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656755

RESUMEN

Difficulty achieving complete, specific, and homogenous staining is a major bottleneck preventing the widespread use of tissue clearing techniques to image large volumes of human tissue. In this manuscript, we describe a procedure to rapidly design immunostaining protocols for antibody labeling of cleared brain tissue. We prepared libraries of 0.5-1.0 mm thick tissue sections that are fixed, pre-treated, and cleared via similar, but different procedures to optimize staining conditions for a panel of antibodies. Results from a library of mouse tissue correlate well with results from a similarly prepared library of human brain tissue, suggesting mouse tissue is an adequate substitute for protocol optimization. These data show that procedural differences do not influence every antibody-antigen pair in the same way, and minor changes can have deleterious effects, therefore, optimization should be conducted for each target. The approach outlined here will help guide researchers to successfully label a variety of targets, thus removing a major hurdle to accessing the rich 3D information available in large, cleared human tissue volumes.


Asunto(s)
Anticuerpos , Imagenología Tridimensional , Humanos , Animales , Ratones , Coloración y Etiquetado , Imagenología Tridimensional/métodos , Encéfalo
14.
J Pharm Sci ; 112(3): 691-699, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36279953

RESUMEN

The use of multi-attribute method (MAM) for identity and purity testing of biopharmaceuticals offers the ability to complement and replace multiple conventional analytical technologies with a single mass spectrometry (MS) method. Phase-appropriate method validation is one major consideration for the implementation of MAM in a current Good Manufacturing Practice (cGMP) environment. We developed a MAM workflow for therapeutic monoclonal antibodies (mAbs) with optimized sample preparation using lysyl endopeptidase (Lys-C) digestion. In this study, we evaluated the assay performances of this platform MAM workflow for identity, product quality attributes (PQAs) monitoring and new peak detection (NPD) for single and coformulated mAbs. An IgG4 mAb-1 and its coformulations were used as model molecules in this study. The assay performance evaluation demonstrated the full potential of the platform MAM approach for its intended use for characterization and quality control of single mAb-1 and mAb-1 in its coformulations. To the best of our knowledge, this is the first performance evaluation of MAM for mAb identity, PQA monitoring, and new peak detection (NPD) in a single assay, featuring 1) the first performance evaluation of MAM for PQA monitoring using Lys-C digestion with a high-resolution MS, 2) a new approach for mAb identity testing capable of distinguishing single mAb from coformulations using MAM, and 3) the performance evaluation of NPD for MAM with Lys-C digestion. The developed platform MAM workflow and the MAM performance evaluation paved the way for its GMP qualification and enabled clinical release of mAb-1 in GMP environment with MAM.


Asunto(s)
Anticuerpos Monoclonales , Productos Biológicos , Anticuerpos Monoclonales/química , Espectrometría de Masas/métodos , Control de Calidad , Digestión
15.
Diabetes Care ; 46(2): 391-398, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480729

RESUMEN

OBJECTIVE: Current studies on continuous glucose monitor (CGM) uptake are revealing for significant barriers and inequities for CGM use among patients from socially underprivileged communities. This study explores the effect of full subsidies regardless of diabetes type on CGM uptake and HbA1c outcomes in a U.S. adult patient population on Medicaid. RESEARCH DESIGN AND METHODS: This retrospective cohort study examined 3,036 adults with diabetes enrolled in a U.S. Medicaid program that fully subsidized CGM. CGM uptake and adherence were assessed by CGM prescription and dispense data, including more than one fill and adherence by medication possession ratio (MPR). Multivariate logistic regression evaluated predictors of CGM uptake. Pre- and post-CGM use HbA1c were compared. RESULTS: CGM were very well received by both individuals with type 1 diabetes and individuals with type 2 diabetes with similar high fill adherence levels (mean MPR 0.78 vs. 0.72; P = 0.06). No significant difference in CGM uptake outcomes were noted among major racial/ethnic groups. CGM use was associated with improved HbA1c among those with type 2 diabetes (-1.2% [13.1 mmol/mol]; P < 0.001) that was comparable between major racial/ethnic groups and those with higher fill adherence achieved greater HbA1c reduction (-1.4% [15.3 mmol/mol]; P < 0.001) compared with those with lower adherence (-1.0% [10.9 mmol/mol]; P < 0.001). CONCLUSIONS: CGM uptake disparities can largely be overcome by eliminating CGM cost barriers. CGM use was associated with improved HbA1c across all major racial/ethnic groups, highlighting broad CGM appeal, utilization, and effectiveness across an underprivileged patient population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada , Estudios Retrospectivos , Medicaid , Automonitorización de la Glucosa Sanguínea , Glucemia
16.
Anal Chem ; 94(49): 17131-17141, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36441925

RESUMEN

The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a "hit-or-miss" strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.


Asunto(s)
Productos Biológicos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas/métodos , Anticuerpos Monoclonales/análisis
17.
EBioMedicine ; 82: 104203, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35915046

RESUMEN

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Mesocricetus , SARS-CoV-2 , Virus de la Estomatitis Vesicular Indiana/genética , Inmunogenicidad Vacunal
18.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591088

RESUMEN

Raman spectroscopy is an analytical technology for the simultaneous measurement of important process parameters, such as concentrations of nutrients, metabolites, and product titer in mammalian cell culture. The majority of published Raman studies have concentrated on using the technique for the monitoring and control of bioreactors at pilot and manufacturing scales. This research presents a novel approach to generating Raman models using a high-throughput 250 mL mini bioreactor system with the following two integrated analysis modules: a prototype flow cell enabling on-line Raman measurements and a bioanalyzer to generate reference measurements without a significant time-shift, compared to the corresponding Raman measurement. Therefore, spectral variations could directly be correlated with the actual analyte concentrations to build reliable models. Using a design of experiments (DoE) approach and additional spiked samples, the optimized workflow resulted in robust Raman models for glucose, lactate, glutamine, glutamate and titer in Chinese hamster ovary (CHO) cell cultures producing monoclonal antibodies (mAb). The setup presented in this paper enables the generation of reliable Raman models that can be deployed to predict analyte concentrations, thereby facilitating real-time monitoring and control of biologics manufacturing.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Espectrometría Raman , Animales , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Células CHO , Calibración , Cricetinae , Cricetulus
19.
J Chromatogr A ; 1675: 463161, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35635865

RESUMEN

The mass spectrometry based multi-attribute method (MAM) has gained popularity in the field of biopharmaceutical analysis as it promises a single method for comprehensive monitoring of multiple product quality attributes (PQAs) and product purity. Sample preparation for protein digestion and peptide separation are critical considerations for a reduced peptide mapping-based MAM. To avoid desalting steps required in most tryptic protein digestion and in order to improve peptide separation for hydrophilic peptides, we developed an improved robust sample preparation using lysyl endopeptidase (Lys-C) for high-throughput MAM testing. Additionally, this method optimizes the peptide retention and separation of a stability-indicating VSNK peptide using a HSS T3 column for comprehensive PQA monitoring. A fully automated sample preparation had similar assay variations for PQAs monitoring compared to manual sample preparation. To the best of our knowledge, this is the first report of a high-resolution MS-based MAM using a streamlined Lys-C digestion without desalting with enhanced PQA monitoring for hydrophilic peptides. The improved, robust MAM workflow for protein digestion and peptide separation will pave the way for broader MAM qualification and its applications for the characterization and quality control of therapeutic monoclonal antibodies.


Asunto(s)
Anticuerpos Monoclonales , Péptidos , Anticuerpos Monoclonales/química , Digestión , Mapeo Peptídico/métodos , Péptidos/análisis , Serina Endopeptidasas
20.
Anal Chem ; 94(23): 8416-8425, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35622908

RESUMEN

CD24Fc is a homodimeric recombinant Fc-fusion protein comprised of human CD24 connected to immunoglobulin G1 (IgG1) Fc fragment. CD24 is heavily glycosylated, and its biological function is considered mainly mediated by its glycosylation. Identification of the O-glycosylation sites would facilitate an in-depth understanding of the functional role of O-glycans in CD24. However, the presence of clustered mucin-type O-glycans together with N-glycans makes the determination of O-glycosylation sites and abundance very challenging. In this study, two sets of liquid chromatography-mass spectrometry (LC-MS) workflows were developed for the comprehensive characterization of O-glycosylation in CD24: (1) Fractionation and collision-induced dissociation (CID) workflow involving multienzyme digestion, fractionation, OpeRATOR/SialEXO digestion, and CID analysis; (2) Direct OpeRATOR/SialEXO digestion followed by electron-transfer/higher-energy collision dissociation (EThcD) analysis. The precise O-glycosylation sites were identified in CD24 for the first time, and the site occupancy was assessed. A total of 12 O-glycosylation sites were identified. Seven glycosylation sites were identified by both workflows, and five additional sites were identified only by the EThcD workflow. The predominant O-glycosylation site in CD24 was Thr25 followed by Thr15. The CID workflow provided an overall relative quantitation of O-glycoforms at the CD24 level and site localization for singly O-glycosylated peptides. The EThcD workflow directly identified glycosylation sites by tandem mass spectrometry (MS/MS) for singly, doubly, and triply O-glycosylated peptides. Together, both workflows validated each other's results and can be applied to a complex mucin-type O-glycosylation site analysis of other glycoproteins and Fc-fusion therapeutics.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Glicopéptidos/química , Glicosilación , Humanos , Polisacáridos , Proteínas Recombinantes de Fusión/química , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...