Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Front Neurosci ; 18: 1354523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572149

RESUMEN

Objective: A third of patients with epilepsy continue to have seizures despite receiving adequate antiseizure medication. Transcranial direct current stimulation (tDCS) might be a viable adjunct treatment option, having been shown to reduce epileptic seizures in patients with focal epilepsy. Evidence for the use of tDCS in genetic generalized epilepsy (GGE) is scarce. We aimed to establish the feasibility of applying tDCS during fMRI in patients with GGE to study the acute neuromodulatory effects of tDCS, particularly on sensorimotor network activity. Methods: Seven healthy controls and three patients with GGE received tDCS with simultaneous fMRI acquisition while watching a movie. Three tDCS conditions were applied: anodal, cathodal and sham. Periods of 60 s without stimulation were applied between each stimulation condition. Changes in sensorimotor cortex connectivity were evaluated by calculating the mean degree centrality across eight nodes of the sensorimotor cortex defined by the Automated Anatomical Labeling atlas (primary motor cortex (precentral left and right), supplementary motor area (left and right), mid-cingulum (left and right), postcentral gyrus (left and right)), across each of the conditions, for each participant. Results: Simultaneous tDCS-fMRI was well tolerated in both healthy controls and patients without adverse effects. Anodal and cathodal stimulation reduced mean degree centrality of the sensorimotor network (Friedman's ANOVA with Dunn's multiple comparisons test; adjusted p = 0.02 and p = 0.03 respectively). Mean degree connectivity of the sensorimotor network during the sham condition was not different to the rest condition (adjusted p = 0.94). Conclusion: Applying tDCS during fMRI was shown to be feasible and safe in a small group of patients with GGE. Anodal and cathodal stimulation caused a significant reduction in network connectivity of the sensorimotor cortex across participants. This initial research supports the feasibility of using fMRI to guide and understand network modulation by tDCS that might facilitate its clinical application in GGE in the future.

2.
Epilepsy Behav ; 153: 109671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368788

RESUMEN

Children and young people with epilepsy are at higher risk of mental health disorders and atypical neurodevelopmental outcomes compared to the general population. It is essential to detect such comorbidities early in children with epilepsy and provide appropriate interventions, to improve clinical outcomes. We aimed to identify and evaluate the measurement properties of Patient-Reported Outcome Measures (PROMs) that have been validated specifically to measure mental health and neurodevelopmental outcomes in children and/or young people with epilepsy. We searched Embase, Medline, and PsycINFO in May 2023 for relevant studies. Mental health was defined as psychological symptoms (e.g., anxiety, depression, psychosis) and/or behavioural difficulties (e.g., conduct disorders). Neurodevelopmental outcomes included neurodevelopmental disorder traits such as attention-deficit hyperactivity disorder (ADHD) and autistic spectrum disorders. We assessed methodological quality using Consensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidance. Twelve papers were identified that psychometrically evaluated 13 relevant PROMs (two epilepsy-specific, eleven generic). The appraisal of the PROMs was limited by the availability of only one or two published articles for each, and incomplete psychometric evaluations in some cases. The tool demonstrating the strongest evidence was The Neurological Disorders Depression Inventory-Epilepsy for Youth. The ADHD Rating Scale-IV and The Paediatric Symptom Checklist -17 demonstrated good evidence in favour of at least two measurement properties. This review identified only a small number of mental health and neurodevelopmental PROMs evaluated specifically in paediatric epilepsy. There is a need for further validation of mental health and neurodevelopmental PROMs in children with epilepsy.


Asunto(s)
Epilepsia , Trastornos Psicóticos , Adolescente , Humanos , Niño , Salud Mental , Epilepsia/complicaciones , Epilepsia/terapia , Trastornos de Ansiedad , Medición de Resultados Informados por el Paciente , Calidad de Vida/psicología
3.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366862

RESUMEN

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Convulsiones/diagnóstico , Convulsiones/terapia , Epilepsia/diagnóstico , Electroencefalografía/métodos
4.
Epilepsy Behav ; 151: 109609, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160578

RESUMEN

BACKGROUND: Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE: The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS: Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS: Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS: EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.


Asunto(s)
Epilepsia , Adulto , Humanos , Estudios de Factibilidad , Epilepsia/diagnóstico , Personal de Salud , Encuestas y Cuestionarios , Electroencefalografía
5.
Front Surg ; 10: 1304343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026479

RESUMEN

Background: A new class of subcutaneous electroencephalography has enabled ultra long-term monitoring of people with epilepsy. The objective of this paper is to describe surgeons' experiences in an early series of implantations as well as discomfort or complications experienced by the participants. Methods: We included 38 implantation procedures from two trials on people with epilepsy and healthy adults. Questionnaires to assess surgeons' and participants' experience were analyzed as well as all recorded adverse events occurring up to 21 days post-surgery. Results: With training, the implantation could be performed in approximately 15 min. Overall, the implantation procedure was considered easy to perform with only 2 episodes where the implant got fixated in the introducing needle and a new implant had to be used. The explantation procedure was considered effortless. In 2 cases the silicone sheath covering the lead was damaged during the explantation, but it was possible to remove the entire implant without leaving any foreign body under the skin. Especially in the trial on healthy participants, a proportion experienced adverse events in the form of headache or implant-pain up to 21 days post-operatively. In 6 cases, adverse events contributed to the decision to explant and discontinue the study: Four of these cases involved implant pain or headache; One case involved a post-operative local infection; and in one case superficial lead placement resulted in skin perforation a few weeks after implantation. Conclusion: The implantation and explantation procedures are considered swift and easy to perform by both neurosurgeons and ENT surgeons. The implant is well tolerated by most participants. However, headache or pain around the implant can occur for up to 21 days post-operatively as anticipated with any such surgery. The expected benefits from the implant should always outweigh the potential disadvantages.

6.
NPJ Genom Med ; 8(1): 28, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770509

RESUMEN

Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.

7.
Ann Clin Transl Neurol ; 10(10): 1863-1872, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37608738

RESUMEN

OBJECTIVE: Circadian and multidien cycles of seizure occurrence are increasingly discussed as to their biological underpinnings and in the context of seizure forecasting. This study analyzes if patient reported seizures provide valid data on such cyclical occurrence. METHODS: We retrospectively studied if circadian cycles derived from patient-based reporting reflect the objective seizure documentation in 2003 patients undergoing in-patient video-EEG monitoring. RESULTS: Only 24.1% of more than 29000 seizures documented were accompanied by patient notifications. There was cyclical underreporting of seizures with a maximum during nighttime, leading to significant deviations in the circadian distribution of seizures. Significant cyclical deviations were found for focal epilepsies originating from both, frontal and temporal lobes, and for different seizure types (in particular, focal unaware and focal to bilateral tonic-clonic seizures). INTERPRETATION: Patient seizure diaries may reflect a cyclical reporting bias rather than the true circadian seizure distributions. Cyclical underreporting of seizures derived from patient-based reports alone may lead to suboptimal treatment schemes, to an underestimation of seizure-associated risks, and may pose problems for valid seizure forecasting. This finding strongly supports the use of objective measures to monitor cyclical distributions of seizures and for studies and treatment decisions based thereon.


Asunto(s)
Epilepsias Parciales , Convulsiones , Humanos , Estudios Retrospectivos , Convulsiones/diagnóstico , Epilepsias Parciales/diagnóstico , Electroencefalografía , Documentación
8.
Epilepsy Behav ; 147: 109397, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619460

RESUMEN

OBJECTIVE: Self-limiting Rolandic epilepsy (RE) is the most common epilepsy in school-age children. Seizures are generally infrequent, but cognitive, language, and motor coordination problems can significantly impact the child's life. To better understand brain structure and function changes in RE, we longitudinally assessed neurocognition, cortical thickness, and subcortical volumes. METHODS: At baseline, we recruited 30 participants diagnosed with RE and 24-healthy controls and followed up for 4.94 ± 0.8 years when the participants with RE were in seizure remission. Measures included were as follows: T1-weighted magnetic resonance brain imaging (MRI) with FreeSurfer analysis and detailed neuropsychological assessments. MRI and neuropsychological data were compared between baseline and follow-up in seizure remission. RESULTS: Longitudinal MRI revealed excess cortical thinning in the left-orbitofrontal (p = 0.0001) and pre-central gyrus (p = 0.044). There is a significant association (p = 0.003) between a reduction in cortical thickness in the left-orbitofrontal cluster and improved processing of filtered words. Longitudinal neuropsychology revealed significant improvements in the symptoms of developmental coordination disorder (DCD, p = 0.005) in seizure remission. CONCLUSIONS: There is evidence for altered development of neocortical regions between active seizure state and seizure remission in RE within two clusters maximal in the left-orbitofrontal and pre-central gyrus. There is significant evidence for improvement in motor coordination between active seizures and seizure remission and suggestive evidence for a decline in fluid intelligence and gains in auditory processing.


Asunto(s)
Epilepsia Rolándica , Niño , Humanos , Epilepsia Rolándica/diagnóstico por imagen , Estudios Prospectivos , Estudios Longitudinales , Convulsiones/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
9.
EBioMedicine ; 93: 104656, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37331164

RESUMEN

BACKGROUND: Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promising forecasting results. This study validates a forecasting method using multimodal cycles recorded from wearable devices. METHOD: Seizure and heart rate cycles were extracted from 13 participants. The mean period of heart rate data from a smartwatch was 562 days, with a mean of 125 self-reported seizures from a smartphone app. The relationship between seizure onset time and phases of seizure and heart rate cycles was investigated. An additive regression model was used to project heart rate cycles. The results of forecasts using seizure cycles, heart rate cycles, and a combination of both were compared. Forecasting performance was evaluated in 6 of 13 participants in a prospective setting, using long-term data collected after algorithms were developed. FINDINGS: The results showed that the best forecasts achieved a mean area under the receiver-operating characteristic curve (AUC) of 0.73 for 9/13 participants showing performance above chance during retrospective validation. Subject-specific forecasts evaluated with prospective data showed a mean AUC of 0.77 with 4/6 participants showing performance above chance. INTERPRETATION: The results of this study demonstrate that cycles detected from multimodal data can be combined within a single, scalable seizure risk forecasting algorithm to provide robust performance. The presented forecasting method enabled seizure risk to be estimated for an arbitrary future period and could be generalised across a range of data types. In contrast to earlier work, the current study evaluated forecasts prospectively, in subjects blinded to their seizure risk outputs, representing a critical step towards clinical applications. FUNDING: This study was funded by an Australian Government National Health & Medical Research Council and BioMedTech Horizons grant. The study also received support from the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Proyectos Piloto , Estudios Prospectivos , Autoinforme , Estudios Retrospectivos , Frecuencia Cardíaca , Australia , Convulsiones/epidemiología , Epilepsia/epidemiología , Predicción
10.
Epilepsia ; 64(9): 2421-2433, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303239

RESUMEN

OBJECTIVE: Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS: Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS: Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE: Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Epilepsia/complicaciones , Epilepsia/diagnóstico , Epilepsia/epidemiología , Electroencefalografía/métodos , Análisis Multivariante , Encuestas y Cuestionarios
11.
Brain Commun ; 5(3): fcad182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361715

RESUMEN

Reliable definitions, classifications and prognostic models are the cornerstones of stratified medicine, but none of the current classifications systems in epilepsy address prognostic or outcome issues. Although heterogeneity is widely acknowledged within epilepsy syndromes, the significance of variation in electroclinical features, comorbidities and treatment response, as they relate to diagnostic and prognostic purposes, has not been explored. In this paper, we aim to provide an evidence-based definition of juvenile myoclonic epilepsy showing that with a predefined and limited set of mandatory features, variation in juvenile myoclonic epilepsy phenotype can be exploited for prognostic purposes. Our study is based on clinical data collected by the Biology of Juvenile Myoclonic Epilepsy Consortium augmented by literature data. We review prognosis research on mortality and seizure remission, predictors of antiseizure medication resistance and selected adverse drug events to valproate, levetiracetam and lamotrigine. Based on our analysis, a simplified set of diagnostic criteria for juvenile myoclonic epilepsy includes the following: (i) myoclonic jerks as mandatory seizure type; (ii) a circadian timing for myoclonia not mandatory for the diagnosis of juvenile myoclonic epilepsy; (iii) age of onset ranging from 6 to 40 years; (iv) generalized EEG abnormalities; and (v) intelligence conforming to population distribution. We find sufficient evidence to propose a predictive model of antiseizure medication resistance that emphasises (i) absence seizures as the strongest stratifying factor with regard to antiseizure medication resistance or seizure freedom for both sexes and (ii) sex as a major stratifying factor, revealing elevated odds of antiseizure medication resistance that correlates to self-report of catamenial and stress-related factors including sleep deprivation. In women, there are reduced odds of antiseizure medication resistance associated with EEG-measured or self-reported photosensitivity. In conclusion, by applying a simplified set of criteria to define phenotypic variations of juvenile myoclonic epilepsy, our paper proposes an evidence-based definition and prognostic stratification of juvenile myoclonic epilepsy. Further studies in existing data sets of individual patient data would be helpful to replicate our findings, and prospective studies in inception cohorts will contribute to validate them in real-world practice for juvenile myoclonic epilepsy management.

13.
J Neurol Neurosurg Psychiatry ; 94(9): 769-775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230745

RESUMEN

BACKGROUND: Patients with functional seizures (FS) can experience dissociation (depersonalisation) before their seizures. Depersonalisation reflects disembodiment, which may be related to changes in interoceptive processing. The heartbeat-evoked potential (HEP) is an electroencephalogram (EEG) marker of interoceptive processing. AIM: To assess whether alterations in interoceptive processing indexed by HEP occur prior to FS and compare this with epileptic seizures (ES). METHODS: HEP amplitudes were calculated from EEG during video-EEG monitoring in 25 patients with FS and 19 patients with ES, and were compared between interictal and preictal states. HEP amplitude difference was calculated as preictal HEP amplitude minus interictal HEP amplitude. A receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of HEP amplitude difference in discriminating FS from ES. RESULTS: The FS group demonstrated a significant reduction in HEP amplitude between interictal and preictal states at F8 (effect size rB=0.612, false discovery rate (FDR)-corrected q=0.030) and C4 (rB=0.600, FDR-corrected q=0.035). No differences in HEP amplitude were found between states in the ES group. Between diagnostic groups, HEP amplitude difference differed between the FS and ES groups at F8 (rB=0.423, FDR-corrected q=0.085) and C4 (rB=0.457, FDR-corrected q=0.085). Using HEP amplitude difference at frontal and central electrodes plus sex, we found that the ROC curve demonstrated an area under the curve of 0.893, with sensitivity=0.840 and specificity=0.842. CONCLUSION: Our data support the notion that aberrant interoception occurs prior to FS. Changes in HEP amplitude may reflect a neurophysiological biomarker of FS and may have diagnostic utility in differentiating FS and ES.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Frecuencia Cardíaca/fisiología , Convulsiones/diagnóstico , Potenciales Evocados/fisiología , Electroencefalografía , Epilepsia/diagnóstico
14.
medRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034596

RESUMEN

Objective: Previous studies suggested that patients with epilepsy might be able to fore-cast their own seizures. We sought to assess the relationships of premonitory symptoms and perceived seizure risk with future and recent self-reported and EEG-confirmed seizures in the subjects living with epilepsy in their natural home environments. Methods: We collected long-term e-surveys from ambulatory patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication compliance, sleep quality, mood, stress, perceived seizure risk and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with device seizure forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). Results: Sixty-nine subjects returned 12,590 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed increased stress (OR = 2.52, 95% CI = [1.52, 4.14], p < 0.001) and decreased mood (0.32, [0.13, 0.82], 0.02) were associated with increased relative odds of future self-reported seizures. On multivariate analysis, previous self-reported seizures (4.24, [2.69, 6.68], < 0.001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (3.30, [1.97, 5.52], < 0.001) remained significant when prior self-reported seizures were added to the model. No significant association was found between e-survey responses and subsequent EEG seizures. Significance: It appears that patients may tend to self-forecast seizures that occur in sequential groupings. Our results suggest that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting. Key points: Long-term e-surveys data and concurrent EEG signals were collected across three study sites to assess the ability of the patients to self-forecast their seizures.Patients may tend to self-forecast self-reported seizures that occur in sequential groupings.Factors, such as mood and stress, may not be independent premonitory symptoms but may be the consequence of recent seizures.No ability to self-forecast EEG confirmed seizures was observed in a small cohort with concurrent EEG validation.A mathematic relation between OR and AUC provides a means to compare forecasting performance between survey and device studies.

15.
Epilepsia ; 64(6): 1627-1639, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060170

RESUMEN

OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios de Cohortes , Convulsiones/diagnóstico , Electroencefalografía , Monitoreo Ambulatorio
16.
J Neurosci ; 43(18): 3259-3283, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019622

RESUMEN

Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Masculino , Femenino , Convulsiones/inducido químicamente , Encéfalo , Neuronas/fisiología , Modelos Neurológicos
17.
PLoS Comput Biol ; 19(3): e1010985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36961869

RESUMEN

Neural mass models (NMMs) are important for helping us interpret observations of brain dynamics. They provide a means to understand data in terms of mechanisms such as synaptic interactions between excitatory and inhibitory neuronal populations. To interpret data using NMMs we need to quantitatively compare the output of NMMs with data, and thereby find parameter values for which the model can produce the observed dynamics. Mapping dynamics to NMM parameter values in this way has the potential to improve our understanding of the brain in health and disease. Though abstract, NMMs still comprise of many parameters that are difficult to constrain a priori. This makes it challenging to explore the dynamics of NMMs and elucidate regions of parameter space in which their dynamics best approximate data. Existing approaches to overcome this challenge use a combination of linearising models, constraining the values they can take and exploring restricted subspaces by fixing the values of many parameters a priori. As such, we have little knowledge of the extent to which different regions of parameter space of NMMs can yield dynamics that approximate data, how nonlinearities in models can affect parameter mapping or how best to quantify similarities between model output and data. These issues need to be addressed in order to fully understand the potential and limitations of NMMs, and to aid the development of new models of brain dynamics in the future. To begin to overcome these issues, we present a global nonlinear approach to recovering parameters of NMMs from data. We use global optimisation to explore all parameters of nonlinear NMMs simultaneously, in a minimally constrained way. We do this using multi-objective optimisation (multi-objective evolutionary algorithm, MOEA) so that multiple data features can be quantified. In particular, we use the weighted horizontal visibility graph (wHVG), which is a flexible framework for quantifying different aspects of time series, by converting them into networks. We study EEG alpha activity recorded during the eyes closed resting state from 20 healthy individuals and demonstrate that the MOEA performs favourably compared to single objective approaches. The addition of the wHVG objective allows us to better constrain the model output, which leads to the recovered parameter values being restricted to smaller regions of parameter space, thus improving the practical identifiability of the model. We then use the MOEA to study differences in the alpha rhythm observed in EEG recorded from 20 people with epilepsy. We find that a small number of parameters can explain this difference and that, counterintuitively, the mean excitatory synaptic gain parameter is reduced in people with epilepsy compared to control. In addition, we propose that the MOEA could be used to mine for the presence of pathological rhythms, and demonstrate the application of this to epileptiform spike-wave discharges.


Asunto(s)
Epilepsia , Modelos Neurológicos , Humanos , Simulación por Computador , Neuronas/fisiología , Encéfalo/fisiología , Dinámicas no Lineales
18.
Epilepsia ; 64 Suppl 3: S62-S71, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36780237

RESUMEN

A lot of mileage has been made recently on the long and winding road toward seizure forecasting. Here we briefly review some selected milestones passed along the way, which were discussed at the International Conference for Technology and Analysis of Seizures-ICTALS 2022-convened at the University of Bern, Switzerland. Major impetus was gained recently from wearable and implantable devices that record not only electroencephalography, but also data on motor behavior, acoustic signals, and various signals of the autonomic nervous system. This multimodal monitoring can be performed for ultralong timescales covering months or years. Accordingly, features and metrics extracted from these data now assess seizure dynamics with a greater degree of completeness. Most prominently, this has allowed the confirmation of the long-suspected cyclical nature of interictal epileptiform activity, seizure risk, and seizures. The timescales cover daily, multi-day, and yearly cycles. Progress has also been fueled by approaches originating from the interdisciplinary field of network science. Considering epilepsy as a large-scale network disorder yielded novel perspectives on the pre-ictal dynamics of the evolving epileptic brain. In addition to discrete predictions that a seizure will take place in a specified prediction horizon, the community broadened the scope to probabilistic forecasts of a seizure risk evolving continuously in time. This shift of gears triggered the incorporation of additional metrics to quantify the performance of forecasting algorithms, which should be compared to the chance performance of constrained stochastic null models. An imminent task of utmost importance is to find optimal ways to communicate the output of seizure-forecasting algorithms to patients, caretakers, and clinicians, so that they can have socioeconomic impact and improve patients' well-being.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Encéfalo , Predicción , Electroencefalografía
19.
BMJ Open ; 12(12): e065390, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36576179

RESUMEN

INTRODUCTION: A first unprovoked seizure is a common presentation, reliably identifying those that will have recurrent seizures is a challenge. This study will be the first to explore the combined utility of serum biomarkers, quantitative electroencephalogram (EEG) and quantitative MRI to predict seizure recurrence. This will inform patient stratification for counselling and the inclusion of high-risk patients in clinical trials of disease-modifying agents in early epilepsy. METHODS AND ANALYSIS: 100 patients with first unprovoked seizure will be recruited from a tertiary neuroscience centre and baseline assessments will include structural MRI, EEG and a blood sample. As part of a nested pilot study, a subset of 40 patients will have advanced MRI sequences performed that are usually reserved for patients with refractory chronic epilepsy. The remaining 60 patients will have standard clinical MRI sequences. Patients will be followed up every 6 months for a 24-month period to assess seizure recurrence. Connectivity and network-based analyses of EEG and MRI data will be carried out and examined in relation to seizure recurrence. Patient outcomes will also be investigated with respect to analysis of high-mobility group box-1 from blood serum samples. ETHICS AND DISSEMINATION: This study was approved by North East-Tyne & Wear South Research Ethics Committee (20/NE/0078) and funded by an Association of British Neurologists and Guarantors of Brain clinical research training fellowship. Findings will be presented at national and international meetings published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NIHR Clinical Research Network's (CRN) Central Portfolio Management System (CPMS)-44976.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Adulto , Proyectos Piloto , Convulsiones/diagnóstico , Estudios de Cohortes , Electroencefalografía , Biomarcadores , Recurrencia , Estudios Observacionales como Asunto
20.
Sci Rep ; 12(1): 21412, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496546

RESUMEN

Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring.


Asunto(s)
Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Exactitud de los Datos , Reproducibilidad de los Resultados , Convulsiones , Epilepsia/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...