Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurobiol Stress ; 29: 100614, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38357099

RESUMEN

Depression during pregnancy is detrimental for the wellbeing of the expectant mother and can exert long-term consequences on the offspring's development and mental health. In this context, both the gestational environment and the postpartum milieu may be negatively affected by the depressive pathology. It is, however, challenging to assess whether the contributions of prenatal and postnatal depression exposure are distinct, interactive, or cumulative, as it is unclear whether antenatal effects are due to direct effects on fetal development or because antenatal symptoms continue postnatally. Preclinical models have sought to answer this question by implementing stressors that induce a depressive-like state in the dams during pregnancy and studying the effects on the offspring. The aim of our present study was to disentangle the contribution of direct stress in utero from possible changes in maternal behavior in a novel model of preconceptional stress based on social isolation rearing (SIR). Using a cross-fostering paradigm in this model, we show that while SIR leads to subtle changes in maternal behavior, the behavioral changes observed in the offspring are driven by a complex interaction between sex, and prenatal and postnatal maternal factors. Indeed, male offspring are more sensitive to the prenatal environment, as demonstrated by behavioral and transcriptional changes driven by their birth mother, while females are likely affected by more complex interactions between the pre and the postpartum milieu, as suggested by the important impact of their surrogate foster mother. Taken together, our findings suggest that male and female offspring have different time-windows and behavioral domains of susceptibility to maternal preconceptional stress, and thus underscore the importance of including both sexes when investigating the mechanisms that mediate the negative consequences of exposure to such stressor.

2.
Neuropsychopharmacology ; 46(8): 1526-1534, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33941860

RESUMEN

BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult offspring received BI 409306 1 mg/kg and/or risperidone 0.025 mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1 mg/kg during adolescence only, or continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-dependent manner (Study 1). Furthermore, BI 409306 1 mg/kg alone or in combination with risperidone 0.025 mg/kg significantly reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we revealed that BI 409306 1 mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together, our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction deficits in this model, supporting its use in people with APS.


Asunto(s)
Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Adulto , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Humanos , Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Embarazo , Pirazoles , Pirimidinas
3.
Mol Psychiatry ; 26(11): 6756-6772, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34002019

RESUMEN

Antenatal psychopathology negatively affects obstetric outcomes and exerts long-term consequences on the offspring's wellbeing and mental health. However, the precise mechanisms underlying these associations remain largely unknown. Here, we present a novel model system in mice that allows for experimental investigations into the effects of antenatal depression-like psychopathology and for evaluating the influence of maternal pharmacological treatments on long-term outcomes in the offspring. This model system in based on rearing nulliparous female mice in social isolation prior to mating, leading to a depressive-like state that is initiated before and continued throughout pregnancy. Using this model, we show that the maternal depressive-like state induced by social isolation can be partially rescued by chronic treatment with the selective serotonin reuptake inhibitor, fluoxetine (FLX). Moreover, we identify numerous and partly sex-dependent behavioral and molecular abnormalities, including increased anxiety-like behavior, cognitive impairments and alterations of the amygdalar transcriptome, in offspring born to socially isolated mothers relative to offspring born to mothers that were maintained in social groups prior to conception. We also found that maternal FLX treatment was effective in preventing some of the behavioral and molecular abnormalities emerging in offspring born to socially isolated mothers. Taken together, our findings suggest that the presence of a depressive-like state during preconception and pregnancy has sex-dependent consequences on brain and behavioral functions in the offspring. At the same time, our study highlights that FLX treatment in dams with a depression-like state can prevent abnormal behavioral development in the offspring.


Asunto(s)
Depresión , Efectos Tardíos de la Exposición Prenatal , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico
4.
Lab Anim (NY) ; 50(3): 69-75, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619409

RESUMEN

The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.


Asunto(s)
Clozapina , Drogas de Diseño , Animales , Encéfalo , Ratones , Neuronas , Óxidos
5.
Mol Psychiatry ; 26(3): 849-863, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31168068

RESUMEN

The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1ß, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1ß mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Mesencéfalo , Ratones , Microglía , Embarazo , Esquizofrenia/genética
6.
Neuropsychopharmacology ; 46(2): 404-412, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32919409

RESUMEN

Prenatal exposure to infectious and/or inflammatory insults is increasingly recognized to contribute to the etiology of psychiatric disorders with neurodevelopmental components. Recent research using animal models suggests that maternal immune activation (MIA) can induce transgenerational effects on brain and behavior, possibly through epigenetic mechanisms. Using a mouse model of MIA that is based on gestational treatment with the viral mimeticpoly(I:C) (= polyriboinosinic-polyribocytidilic acid), the present study explored whether the transgenerational effects of MIA are extendable to dopaminergic dysfunctions. We show that the direct descendants born to poly(I:C)-treated mothers display signs of hyperdopaminergia, as manifested by a potentiated sensitivity to the locomotor-stimulating effects of amphetamine (Amph) and increased expression of tyrosine hydroxylase (Th) in the adult ventral midbrain. In stark contrast, second- and third-generation offspring of MIA-exposed ancestors displayed blunted locomotor responses to Amph and reduced expression of Th. Furthermore, we found increased DNA methylation at the promoter region of the dopamine-specifying factor, nuclear receptor-related 1 protein (Nurr1), in the sperm of first-generation MIA offspring and in the ventral midbrain of second-generation offspring of MIA-exposed ancestors. The latter effect was further accompanied by reduced mRNA levels of Nurr1 in this brain region. Together, our results suggest that MIA has the potential to modify dopaminergic functions across multiple generations with opposite effects in the direct descendants and their progeny. The presence of altered DNA methylation in the sperm of MIA-exposed offspring highlights the possibility that epigenetic processes in the male germline play a role in the transgenerational effects of MIA.


Asunto(s)
Conducta Animal , Efectos Tardíos de la Exposición Prenatal , Animales , Modelos Animales de Enfermedad , Dopamina , Femenino , Poli I-C , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
7.
Biol Psychiatry ; 89(3): 215-226, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381277

RESUMEN

Epigenetic modifications are increasingly recognized to play a role in the etiology and pathophysiology of schizophrenia and other psychiatric disorders with developmental origins. Here, we summarize clinical and preclinical findings of epigenetic alterations in schizophrenia and relevant disease models and discuss their putative origin. Recent findings suggest that certain schizophrenia risk loci can influence stochastic variation in gene expression through epigenetic processes, highlighting the intricate interaction between genetic and epigenetic control of neurodevelopmental trajectories. In addition, a substantial portion of epigenetic alterations in schizophrenia and related disorders may be acquired through environmental factors and may be manifested as molecular "scars." Some of these scars can influence brain functions throughout the entire lifespan and may even be transmitted across generations via epigenetic germline inheritance. Epigenetic modifications, whether caused by genetic or environmental factors, are plausible molecular sources of phenotypic heterogeneity and offer a target for therapeutic interventions. The further elucidation of epigenetic modifications thus may increase our knowledge regarding schizophrenia's heterogeneous etiology and pathophysiology and, in the long term, may advance personalized treatments through the use of biomarker-guided epigenetic interventions.


Asunto(s)
Esquizofrenia , Variación Biológica Poblacional , Cicatriz , Metilación de ADN , Exposición a Riesgos Ambientales , Epigénesis Genética , Humanos , Esquizofrenia/genética
8.
Mol Psychiatry ; 26(6): 2025-2037, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32398717

RESUMEN

The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.


Asunto(s)
Células Endoteliales , Receptores de GABA , Animales , Ratones , Microglía , Neuronas , Tomografía de Emisión de Positrones , Receptores de GABA/genética
9.
Mol Psychiatry ; 26(2): 396-410, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230204

RESUMEN

Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.


Asunto(s)
Conducta Animal , Efectos Tardíos de la Exposición Prenatal , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo , Conducta Social
10.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114694

RESUMEN

Different cell isolation techniques exist for transcriptomic and proteotype profiling of brain cells. Here, we provide a systematic investigation of the influence of different cell isolation protocols on transcriptional and proteotype profiles in mouse brain tissue by taking into account single-cell transcriptomics of brain cells, proteotypes of microglia and astrocytes, and flow cytometric analysis of microglia. We show that standard enzymatic digestion of brain tissue at 37 °C induces profound and consistent alterations in the transcriptome and proteotype of neuronal and glial cells, as compared to an optimized mechanical dissociation protocol at 4 °C. These findings emphasize the risk of introducing technical biases and biological artifacts when implementing enzymatic digestion-based isolation methods for brain cell analyses.


Asunto(s)
Astrocitos/química , Neoplasias Encefálicas/metabolismo , Enzimas/metabolismo , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Glioma/metabolismo , Microglía/química , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Separación Celular/métodos , Cromatografía Liquida , Glioma/genética , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Proteómica/métodos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espectrometría de Masas en Tándem
11.
Brain Behav Immun ; 88: 461-470, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32278850

RESUMEN

Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure. This administration method is based on a sweetened condensed milk solution as a vehicle for pharmacological substances, which motivates the animals to consume vehicle and/or drug solutions voluntarily in the presence of the experimenter. In a proof-of-concept study, we show that the pharmacokinetic profiles of the atypical antipsychotic drug, risperidone, were similar whether administered via the MDA procedure or via the conventional oral gavage method. Unlike the latter, however, MDA did not induce the stress hormone, corticosterone. Furthermore, we assessed the suitability and validity of the MDA method in a mouse model of maternal immune activation, which is frequently used as a model of immune-mediated neurodevelopmental disorders. Using this model, we found that chronic treatment (>4 weeks, once per day) with risperidone via MDA led to a dose-dependent mitigation of MIA-induced social interaction deficits and amphetamine hypersensitivity. Taken together, the MDA procedure described herein represents a novel pharmacological administration method for per os treatments in mice that is easy to implement, cost effective, non-invasive, and less stressful for the animals than conventional oral gavage methods.


Asunto(s)
Antipsicóticos , Trastornos del Neurodesarrollo , Preparaciones Farmacéuticas , Administración Oral , Animales , Ratones , Risperidona
12.
Neurosci Biobehav Rev ; 117: 253-278, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981347

RESUMEN

When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Trastorno del Espectro Autista/genética , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Esquizofrenia/genética
13.
Brain Behav Immun ; 80: 406-418, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980948

RESUMEN

Maternal immune activation (MIA) models that are based on administration of the viral mimetic, poly(I:C), are widely used as experimental tools to study neuronal and behavioral dysfunctions in relation to immune-mediated neurodevelopmental disorders and mental illnesses. Evidence from investigations in non-pregnant rodents suggests that different poly(I:C) products can vary in terms of their immunogenicity, even if they are obtained from the same vendor. The present study aimed at extending these findings to pregnant mice, while also controlling various poly(I:C) products for potential contamination with lipopolysaccharide (LPS). We found significant variability between different batches of poly(I:C) potassium salt obtained from the same vendor (Sigma-Aldrich) in terms of the relative amount of dsRNA fragments in the high molecular weight range (1000-6000 nucleotides long) and with regards to their effects on maternal thermoregulation and immune responses in maternal plasma, placenta and fetal brain. Batches of poly(I:C) potassium salt containing larger amounts of high molecular weight fragments induced more extensive effects on thermoregulation and immune responses compared to batches with minimal amounts of high molecular weight fragments. Consistent with these findings, poly(I:C) enriched for high molecular weight dsRNA (HMW) caused larger maternal and placental immune responses compared to low molecular weight (LMW) poly(I:C). These variable effects were unrelated to possible LPS contamination. Finally, we found marked variability between different batches of the poly(I:C) potassium salt in terms of their effects on spontaneous abortion rates. This batch-to-batch variability was confirmed by three independent research groups using distinct poly(I:C) administration protocols in mice. Taken together, the present data confirm that different poly(I:C) products can induce varying immune responses and can differentially affect maternal physiology and pregnancy outcomes. It is therefore pivotal that researchers working with poly(I:C)-based MIA models ascertain and consider the precise molecular composition and immunogenicity of the product in use. We recommend the establishment of reference databases that combine phenotype data with empirically acquired quality information, which can aid the design, implementation and interpretation of poly(I:C)-based MIA models.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Poli I-C/farmacología , Complicaciones Infecciosas del Embarazo/inmunología , Resultado del Embarazo , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Feto/inmunología , Lipopolisacáridos/análisis , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Placenta/inmunología , Poli I-C/análisis , Embarazo , Complicaciones Infecciosas del Embarazo/etiología , ARN/análisis
14.
Brain ; 142(4): 885-902, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30805583

RESUMEN

Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor ß (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.


Asunto(s)
Astrocitos/metabolismo , Osificación Heterotópica/patología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Anciano , Animales , Encéfalo/patología , Encefalopatías/genética , Calcinosis/patología , Femenino , Humanos , Masculino , Ratones , Mutación , Osteogénesis/fisiología , Estrés Oxidativo , Linaje , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Receptor de Retrovirus Xenotrópico y Politrópico
15.
Pharmacol Biochem Behav ; 178: 19-29, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29782942

RESUMEN

Different timing and light phases are critical factors in behavioural neuroscience, which can greatly affect the experimental outcomes of the performed tests. Despite the fact that time of testing is one of the most common factors that varies across behavioural laboratories, knowledge about the consequences of testing time on behavioural readouts is limited. Thus, in this study we systematically assessed the effect of this factor on the readout of a variety of elementary and recurrent behavioural paradigms in C57Bl/6 mice. Furthermore, we investigated potential neuronal correlates of this phenomenon by analysing how testing time influences the expression pattern of genes relevant for neuronal activation functions and the control of brain circadian rhythms. We show that animals tested in the light phase display reduced social approach behaviour and sensorimotor gating and increased locomotor activity, whereas anxiety-related behaviour and working memory are not affected. In addition, animals tested in the light phase also exhibit increased locomotor response to systemic amphetamine treatment, which is paralleled by alterations in the expression patterns of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the Nucleus Accumbens (NAc) and/or Midbrain (Mid). Lastly, we observed that neuronal activation, indexed by the gene expression levels of cFos, was increased in the NAc and Mid of animals tested during the light phase. Our data thus suggest that daily alterations in gene expression in mesolimbic brain structures might be involved in the different behavioural responses of mice tested in the light- versus the dark-phase. At the same time, our study adds further weight to the notion that the specific timing of testing can indeed strongly affect the readout of a given test. As comparison and reproducibility of findings is pivotal in science, experimental protocols should be clarified in detail to allow appropriate data comparison across different laboratories.


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Fotoperiodo , Anfetamina/administración & dosificación , Anfetamina/farmacología , Animales , Ansiedad/psicología , Estudios de Cohortes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Femenino , Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Memoria a Corto Plazo , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Reflejo de Sobresalto , Conducta Social , Tirosina 3-Monooxigenasa/genética
16.
Genes Brain Behav ; 18(4): e12523, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30267483

RESUMEN

Hemizygous microdeletion at the chromosomal locus 22q11.2 is a copy number variation with strong genetic linkage to schizophrenia and related disorders. This association, along with its phenotypic overlap with the 22q11.2 microdeletion syndrome, has motivated the establishment of Df[h22q11]/+ mice, in which the human 22q11.2 orthologous region is deleted. Previous investigations using this model showed the presence of reduced prepulse inhibition (PPI) of the acoustic startle reflex, a form of sensorimotor gating known to be impaired in a number of psychiatric disorders. Concomitantly to reduced PPI, however, Df[h22q11]/+ mice are also characterized by a robust increase in baseline startle reactivity, which may complicate or confound the interpretation of PPI. Therefore, the present study re-examined the relationship between acoustic startle reactivity and PPI in this mouse model. We found that while PPI is reduced in Df[h22q11]/+ mice when using its relative indexation (ie, % PPI), this deficit is no longer apparent when using the absolute quantification, that is, the direct comparison between pulse-alone and prepulse-plus-pulse conditions with successively increasing prepulse intensities. We further identified marked negative correlations between % PPI and startle reactivity in Df[h22q11]/+ mice. Moreover, when stratifying Df[h22q11]/+ mice into subgroups displaying low- and high-startle reactivity, only the latter subgroup displayed a significant reduction in % PPI. Collectively, our data suggest that alterations in baseline startle reactivity can confound the outcomes and interpretation of PPI in this mouse model of the human 22q11.2 microdeletion syndrome.


Asunto(s)
Anomalías Múltiples/fisiopatología , Síndrome de DiGeorge/fisiopatología , Inhibición Neural , Reflejo de Sobresalto , Animales , Duplicación Cromosómica , Cromosomas Humanos Par 22 , Masculino , Ratones , Ratones Endogámicos C57BL , Tiempo de Reacción
17.
Brain Behav Immun ; 73: 643-660, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30026057

RESUMEN

Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.


Asunto(s)
Vivienda para Animales/normas , Fenómenos del Sistema Inmunológico/fisiología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Conducta Animal/fisiología , Quimiocinas/análisis , Citocinas/análisis , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Madres , Poli I-C/farmacología , Embarazo
18.
Sci Rep ; 8(1): 8344, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844565

RESUMEN

The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this maturational period. The nature of this transcriptional reprogramming remains unknown, but may include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. We used high-throughput screening in the adolescent mouse mPFC and identified 38 microRNAs differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming within the mPFC induced by adolescent HFD. These results will help understanding the contribution of microRNAs in the emergence of cognitive deficits following early-life environmental events.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Factores de Edad , Animales , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Transcriptoma/genética
19.
J Neurosci ; 38(7): 1634-1647, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29326171

RESUMEN

Reduced activity of vagal efferents has long been implicated in schizophrenia and appears to be responsible for diminished parasympathetic activity and associated peripheral symptoms such as low heart rate variability and cardiovascular complications in affected individuals. In contrast, only little attention has been paid to the possibility that impaired afferent vagal signaling may be relevant for the disorder's pathophysiology as well. The present study explored this hypothesis using a model of subdiaphragmatic vagal deafferentation (SDA) in male rats. SDA represents the most complete and selective vagal deafferentation method existing to date as it leads to complete disconnection of all abdominal vagal afferents while sparing half of the abdominal vagal efferents. Using next-generation mRNA sequencing, we show that SDA leads to brain transcriptional changes in functional networks annotating with schizophrenia. We further demonstrate that SDA induces a hyperdopaminergic state, which manifests itself as increased sensitivity to acute amphetamine treatment and elevated accumbal levels of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Our study also shows that SDA impairs sensorimotor gating and the attentional control of associative learning, which were assessed using the paradigms of prepulse inhibition and latent inhibition, respectively. These data provide converging evidence suggesting that the brain transcriptome, dopamine neurochemistry, and behavioral functions implicated in schizophrenia are subject to visceral modulation through abdominal vagal afferents. Our findings may encourage the further establishment and use of therapies for schizophrenia that are based on vagal interventions.SIGNIFICANCE STATEMENT The present work provides a better understanding of how disrupted vagal afferent signaling can contribute to schizophrenia-related brain and behavioral abnormalities. More specifically, it shows that subdiaphragmatic vagal deafferentation (SDA) in rats leads to (1) brain transcriptional changes in functional networks related to schizophrenia, (2) increased sensitivity to dopamine-stimulating drugs and elevated dopamine levels in the nucleus accumbens, and (3) impairments in sensorimotor gating and the attentional control of associative learning. These findings may encourage the further establishment of novel therapies for schizophrenia that are based on vagal interventions.


Asunto(s)
Abdomen/inervación , Química Encefálica/genética , Neuronas Aferentes/fisiología , Esquizofrenia/genética , Transcriptoma , Nervio Vago/fisiología , Anfetamina/farmacología , Animales , Aprendizaje por Asociación , Atención/efectos de los fármacos , Desnervación , Dopamina/metabolismo , Dopaminérgicos/farmacología , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Filtrado Sensorial
20.
Cereb Cortex ; 27(6): 3397-3413, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797829

RESUMEN

Prenatal exposure to maternal infection increases the risk of neurodevelopmental disorders, including schizophrenia and autism. The molecular processes underlying this pathological association, however, are only partially understood. Here, we combined unbiased genome-wide transcriptional profiling with follow-up epigenetic analyses and structural magnetic resonance imaging to explore convergent molecular and neuromorphological alterations in corticostriatal areas of adult offspring exposed to prenatal immune activation. Genome-wide transcriptional profiling revealed that prenatal immune activation caused a differential expression of 116 and 251 genes in the medial prefrontal cortex and nucleus accumbens, respectively. A large part of genes that were commonly affected in both brain areas were related to myelin functionality and stability. Subsequent epigenetic analyses indicated that altered DNA methylation of promoter regions might contribute to the differential expression of myelin-related genes. Quantitative relaxometry comparing T1, T2, and myelin water fraction revealed sparse increases in T1 relaxation times and consistent reductions in T2 relaxation times. Together, our multi-system approach demonstrates that prenatal viral-like immune activation causes myelin-related transcriptional and epigenetic changes in corticostriatal areas. Even though these abnormalities do not seem to be associated with overt white matter reduction, they may provide a molecular mechanism whereby prenatal infection can impair myelin functionality and stability.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Estudios de Cohortes , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Inductores de Interferón/toxicidad , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteína Básica de Mielina/metabolismo , Proteínas de la Mielina/metabolismo , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Poli I-C/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...