Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578730

RESUMEN

INTRODUCTION: Amyloid deposition is a cause of restrictive cardiomyopathy. Patients who present with cardiac disease can be evaluated for transthyretin (TTR)-associated cardiac amyloidosis using nuclear imaging with 99mTc-labeled pyrophosphate (PYP); however, light chain-associated (AL) cardiac amyloid is generally not detected using this tracer. As an alternative, the amyloid-binding peptide p5+14 radiolabeled with iodine-124 has been shown to be an effective pan-amyloid radiotracer for PET/CT imaging. Here, a 99mTc-labeled form of p5+14 peptide has been prepared to facilitate SPECT/CT imaging of cardiac amyloidosis. METHOD: A synthesis method suitable for clinical applications has been used to prepare 99mTc-labeled p5+14 and tested for peptide purity, product bioactivity, radiochemical purity and stability. The product was compared with99mTc-PYP for cardiac SPECT/CT imaging in a mouse model of AA amyloidosis and for reactivity with human tissue sections from AL and TTR patients. RESULTS: The 99mTc p5+14 tracer was produced with >95% yields in radiopurity and bioactivity with no purification steps required and retained over 95% peptide purity and >90% bioactivity for >3 h. In mice, the tracer detected hepatosplenic AA amyloid as well as heart deposits with uptake ~5 fold higher than 99mTc-PYP. 99mTc p5+14 effectively bound human amyloid deposits in the liver, kidney and both AL- and ATTR cardiac amyloid in tissue sections in which 99mTc-PYP binding was not detectable. CONCLUSION: 99mTc-p5+14 was prepared in minutes in >20 mCi doses with good performance in preclinical studies making it suitable for clinical SPECT/CT imaging of cardiac amyloidosis.


Asunto(s)
Amiloidosis , Cardiomiopatías , Humanos , Ratones , Animales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Amiloidosis/diagnóstico por imagen , Amiloidosis/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Péptidos , Amiloide/metabolismo , Cardiomiopatías/diagnóstico por imagen , Prealbúmina
2.
JACC Cardiovasc Imaging ; 16(11): 1433-1448, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37940323

RESUMEN

BACKGROUND: The noninvasive detection of cardiac amyloid, as well as deposits in other vital organs, is critical for early diagnosis and quantitative disease monitoring. Positron emission tomography is an intrinsically quantitative imaging modality suitable for high-resolution amyloid detection. OBJECTIVES: This study sought to evaluate the safety and efficacy of a novel amyloid-reactive peptide, designated p5+14, labeled with iodine-124 (124I), in patients with diverse types of systemic amyloidosis. METHODS: In a single-site, open label phase 1/2 study (NCT03678259), the safety, biodistribution, and sensitivity of a single intravenous infusion of 124I-evuzamitide was assessed in patients with systemic amyloidosis (n = 50), asymptomatic transthyretin sequence variant carriers (n = 2), and healthy volunteers (n = 5). Subjects were administered 1.4 ± 0.2 mg of 124I-evuzamitide (71.5 ± 12.4 MBq) and positron emission tomography/x-ray computed tomography images acquired at 5.2 hours (Q25-Q75: 4.9-5.4 hours) postinfusion. Images were assessed visually and semi-quantitatively for positive uptake of radiotracer in the heart and other major organs. RESULTS: Uptake of 124I-evuzamitide in the heart and other abdominothoracic organs was consistent with the patient's clinical presentation and the type of amyloidosis. The patient- and cardiac-associated sensitivity for imaging and clinical observations was 93.6% (95% CI: 82.8%-97.8%) and 96.2% (95% CI: 81.8%-99.8%), respectively. Semi-quantitative uptake of the radiotracer correlated significantly with serum N-terminal pro-B-type natriuretic peptide measurements in patients with light chain-associated amyloidosis. Cardiac uptake was not observed in any healthy volunteers. The agent was well tolerated, with 1 drug-related adverse event and no deaths. CONCLUSIONS: 124I-evuzamitide is an amyloid-binding radiotracer capable of detecting cardiac amyloid in patients with high sensitivity.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular , Valor Predictivo de las Pruebas , Amiloide , Radioisótopos de Yodo , Amiloidosis/diagnóstico por imagen
3.
Front Immunol ; 14: 1275372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854603

RESUMEN

Introduction: Systemic amyloidosis is a progressive disorder characterized by the extracellular deposition of amyloid fibrils and accessory proteins in visceral organs and tissues. Amyloid accumulation causes organ dysfunction and is not generally cleared by the immune system. Current treatment focuses on reducing amyloid precursor protein synthesis and slowing amyloid deposition. However, curative interventions will likely also require removal of preexisting amyloid deposits to restore organ function. Here we describe a prototypic pan-amyloid binding peptide-antibody fusion molecule (mIgp5) that enhances macrophage uptake of amyloid. Methods: The murine IgG1-IgG2a hybrid immunoglobulin with a pan amyloid-reactive peptide, p5, fused genetically to the N-terminal of the immunoglobulin light chain was synthesized in HEK293T/17 cells. The binding of the p5 peptide moiety was assayed using synthetic amyloid-like fibrils, human amyloid extracts and amyloid-laden tissues as substrates. Binding of radioiodinated mIgp5 with amyloid deposits in vivo was evaluated in a murine model of AA amyloidosis using small animal imaging and microautoradiography. The bioactivity of mIgp5 was assessed in complement fixation and in vitro phagocytosis assays in the presence of patient-derived amyloid extracts and synthetic amyloid fibrils as substrates and in the presence or absence of human serum. Results: Murine Igp5 exhibited highly potent binding to AL and ATTR amyloid extracts and diverse types of amyloid in formalin-fixed tissue sections. In the murine model of systemic AA amyloidosis, 125I-mIgp5 bound rapidly and specifically to amyloid deposits in all organs, including the heart, with no evidence of non-specific uptake in healthy tissues. The bioactivity of the immunoglobulin Fc domain was uncompromised in the context of mIgp5 and served as an effective opsonin. Macrophage-mediated uptake of amyloid extract and purified amyloid fibrils was enhanced by the addition of mIgp5. This effect was exaggerated in the presence of human serum coincident with deposition of complement C5b9. Conclusion: Immunostimulatory, amyloid-clearing therapeutics can be developed by incorporating pan-amyloid-reactive peptides, such as p5, as a targeting moiety. The immunologic functionality of the IgG remains intact in the context of the fusion protein. These data highlight the potential use of peptide-antibody fusions as therapeutics for all types of systemic amyloidosis.


Asunto(s)
Amiloidosis , Placa Amiloide , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Células HEK293 , Amiloidosis/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Péptidos/metabolismo , Cadenas Ligeras de Inmunoglobulina
4.
Amyloid ; 30(3): 249-260, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36541892

RESUMEN

BACKGROUND: Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction. METHODS: In vitro and in vivo phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses. RESULTS: Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion. CONCLUSIONS: These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.


Asunto(s)
Amiloide , Placa Amiloide , Animales , Ratones , Amiloide/metabolismo , Placa Amiloide/metabolismo , Fagocitosis/fisiología , Macrófagos/metabolismo , Proteínas Amiloidogénicas/metabolismo , Colágeno/metabolismo
5.
Biochem Biophys Res Commun ; 552: 136-141, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744761

RESUMEN

Peptide p5R is a synthetic, polybasic, heparin-binding peptide that preferentially reacts with amyloid deposits in vivo and in tissue sections. Basic fibroblast growth factor (bFGF1) similarly interacts with heparin-like molecules, notably heparan sulfate proteoglycans (HSPG), in the extracellular matrix and on cell surfaces. The aim of this study was to compare the biodistribution of p5R and bFGF in healthy mice as well as those with systemic inflammation-associated amyloidosis (AA), which contains HSPG, by using SPECT/CT imaging, tissue biodistribution measurements and micro-autoradiography. Although both proteins are known to bind heparan sulfate, their biodistribution was remarkably different in the healthy and diseased animals. Imaging revealed uptake of both radiolabeled proteins in the liver, spleen, and kidneys of mice with amyloidosis; however, 125I-bFGF, but not 125I-p5R, was observed in normal tissue at sites of HSPG expression, including the hepatic and splenic sinusoids and renal glomerulae. Microautoradiography demonstrated that while p5R bound exclusively to amyloid deposits in the spleen and liver of AA mice, bFGF had a broader binding pattern. Consequently, even though bFGF and p5R both interact with heparan sulfate moieties, p5R binding was restricted to HSPG in amyloid deposits and did not bind HSPG in healthy tissues, whereas bFGF preferentially reacted with HSPG in normal tissue. The data suggest that peptide p5R selectively binds HSPG in amyloid and that the HSPG in healthy tissue, recognized by bFGF, is not targeted by the peptide.


Asunto(s)
Amiloide/metabolismo , Amiloidosis/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Péptidos/metabolismo , Amiloidosis/diagnóstico por imagen , Animales , Autorradiografía/métodos , Factor 2 de Crecimiento de Fibroblastos/química , Heparina/química , Radioisótopos de Yodo/metabolismo , Radioisótopos de Yodo/farmacocinética , Hígado/metabolismo , Ratones Endogámicos BALB C , Ratones Transgénicos , Estructura Molecular , Péptidos/química , Dominios Proteicos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Bazo/metabolismo , Distribución Tisular
6.
Am J Pathol ; 189(5): 989-998, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735627

RESUMEN

Light chain-associated amyloidosis is characterized by the extracellular deposition of amyloid fibrils in abdominothoracic organs, skin, soft tissue, and peripheral nerves. Phagocytic cells of the innate immune system appear to be ineffective at clearing the material; however, human light chain amyloid extract, injected subcutaneously into mice, is rapidly cleared in a process that requires neutrophil activity. To better elucidate the phagocytosis of light chain fibrils, a potential method of cell-mediated dissolution, amyloid-like fibrils were labeled with the pH-sensitive dye pHrodo red and a near infrared fluorophore. After injecting this material subcutaneously in mice, optical imaging was used to quantitatively monitor phagocytosis and dissolution of fibrils concurrently. Histologic evaluation of the residual fibril masses revealed the presence of CD68+, F4/80+, ionized calcium binding adaptor molecule 1- macrophages containing Congo red-stained fibrils as well as neutrophil-associated proteins with no evidence of intact neutrophils. These data suggest an early infiltration of neutrophils, followed by extensive phagocytosis of the light chain fibrils by macrophages, leading to dissolution of the mass. Optical imaging of this novel murine model, coupled with histologic evaluation, can be used to study the cellular mechanisms underlying dissolution of synthetic amyloid-like fibrils and human amyloid extracts. In addition, it may serve as a test bed to evaluate investigational opsonizing agents that might serve as therapeutic agents for light chain-associated amyloidosis.


Asunto(s)
Amiloide/fisiología , Amiloidosis/patología , Macrófagos/fisiología , Imagen Óptica/métodos , Fagocitosis , Animales , Femenino , Macrófagos/citología , Ratones
7.
Proc Natl Acad Sci U S A ; 115(46): E10839-E10848, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30377267

RESUMEN

Amyloidosis is a malignant pathology associated with the formation of proteinaceous amyloid fibrils that deposit in organs and tissues, leading to dysfunction and severe morbidity. More than 25 proteins have been identified as components of amyloid, but the most common form of systemic amyloidosis is associated with the deposition of amyloid composed of Ig light chains (AL). Clinical management of amyloidosis focuses on reducing synthesis of the amyloid precursor protein. However, recently, passive immunotherapy using amyloid fibril-reactive antibodies, such as 11-1F4, to remove amyloid from organs has been shown to be effective at restoring organ function in patients with AL amyloidosis. However, 11-1F4 does not bind amyloid in all AL patients, as evidenced by PET/CT imaging, nor does it efficiently bind the many other forms of amyloid. To enhance the reactivity and expand the utility of the 11-1F4 mAb as an amyloid immunotherapeutic, we have developed a pretargeting "peptope" comprising a multiamyloid-reactive peptide, p5+14, fused to a high-affinity peptide epitope recognized by 11-1F4. The peptope, known as p66, bound the 11-1F4 mAb in vitro with subnanomolar efficiency, exhibited multiamyloid reactivity in vitro and, using tissue biodistribution and SPECT imaging, colocalized with amyloid deposits in a mouse model of systemic serum amyloid A amyloidosis. Pretreatment with the peptope induced 11-1F4 mAb accumulation in serum amyloid A deposits in vivo and enhanced 11-1F4-mediated dissolution of a human AL amyloid extract implanted in mice.


Asunto(s)
Amiloidosis/metabolismo , Amiloidosis/terapia , Anticuerpos Monoclonales/fisiología , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Cadáver , Epítopos/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/inmunología , Ratones , Péptidos/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Unión Proteica , Proteína Amiloide A Sérica/metabolismo , Distribución Tisular , Resultado del Tratamiento
8.
J Transl Med ; 15(1): 247, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29228957

RESUMEN

BACKGROUND: Systemic amyloidoses comprise diseases characterized by the deposition of proteinaceous material known as amyloid. Currently, without performing multiple biopsies, there is no way to ascertain the extent of amyloid deposition in patients-a critical piece of information that informs prognosis and therapeutic strategies. We have developed pan-amyloid-targeting peptides for imaging amyloid and recently have adapted these for use as pre-targeting agents in conjunction with immunotherapy. Incorporation of D-amino acids in these peptides may enhance serum half-life, which is an important characteristic of effective peptide therapeutics. Herein, we assess the effects of partial incorporation of D-amino acids into the amyloidophilic peptide p5 on in vivo amyloid reactivity. METHODS: Peptides, referred to as AQAp5 (d) , aqap5, and AQAp5, were radiolabeled with iodine-125 and the tissue biodistribution (% injected dose/gram) measured in healthy mice at multiple time points post-injection. Microscopic distribution of the peptides was further visualized using microautoradiography (ARG). Peptides aqap5 and AQAp5 were injected into healthy and amyloid-laden mice and evaluated by using SPECT/CT imaging at 1, 4 and 24 h post injection. RESULTS: Biodistribution data and ARG revealed persistent retention of [125I]AQAp5 (d) in the liver and kidneys of healthy mice for at least 24 h. In contrast, peptides [125I]aqap5 and [125I]AQAp5 did not bind these organs and was significantly lower than [125I]AQAp5 (d) at 24 h post injection (p < 0.0001). SPECT/CT imaging of amyloid-laden mice revealed accumulation of both [125I]aqap5 and [125I]AQAp5 in amyloid-affected organs; whereas, in healthy mice, [125I]aqap5 was observed in the kidneys and liver at early time points, and free radioiodide liberated during catabolism of [125I]AQAp5 was seen in the stomach and thyroid. Autoradiography confirmed that both [125I]aqap5 and [125I]AQAp5 peptides specifically bound amyloid with no off-target binding to healthy organs. CONCLUSION: Incorporation of D-amino acids in amyloid-binding regions of amyloidophilic peptides resulted in off-target binding; however, N-terminus placement retained amyloid-specificity and evasion of deiodinases. Peptide aqap5, or similar reagents, may prove useful in novel immunotherapy strategies as well as for imaging renal, gastric and pancreatic amyloidosis.


Asunto(s)
Aminoácidos/metabolismo , Amiloide/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Autorradiografía , Humanos , Ratones Transgénicos , Péptidos/química , Estructura Secundaria de Proteína , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
9.
Front Immunol ; 8: 1082, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928748

RESUMEN

There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

11.
Amyloid ; 24(sup1): 74-75, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28434353
14.
Mol Imaging Biol ; 19(5): 714-722, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28229334

RESUMEN

PURPOSE: The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. PROCEDURES: Peptides with disrupted helical structure [p5(coil) and p5(Pro3)], with an extended sheet conformation [p5(sheet)] or an all-D enantiomer [p5(D)], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. RESULTS: Peptides with reduced helical propensity, p5(coil) and p5(Pro3), exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5(D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5(sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. CONCLUSIONS: Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for ß-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.


Asunto(s)
Aminoácidos/genética , Amiloide/metabolismo , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Amiloidosis/diagnóstico por imagen , Amiloidosis/patología , Animales , Autorradiografía , Radioisótopos de Yodo/química , Ratones Transgénicos , Unión Proteica , Conformación Proteica en Lámina beta , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular
15.
Sci Rep ; 6: 22695, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26936002

RESUMEN

Amyloidosis is a protein-misfolding disorder characterized by the extracellular deposition of amyloid, a complex matrix composed of protein fibrils, hyper-sulphated glycosaminoglycans and serum amyloid P component (SAP). Accumulation of amyloid in visceral organs results in the destruction of tissue architecture leading to organ dysfunction and failure. Early differential diagnosis and disease monitoring are critical for improving patient outcomes; thus, whole body amyloid imaging would be beneficial in this regard. Non-invasive molecular imaging of systemic amyloid is performed in Europe by using iodine-123-labelled SAP; however, this tracer is not available in the US. Therefore, we evaluated synthetic, poly-basic peptides, designated p5 and p5+14, as alternative radiotracers for detecting systemic amyloidosis. Herein, we perform a comparative effectiveness evaluation of radiolabelled peptide p5+14 with p5 and SAP, in amyloid-laden mice, using dual-energy SPECT imaging and tissue biodistribution measurements. All three radiotracers selectively bound amyloid in vivo; however, p5+14 was significantly more effective as compared to p5 in certain organs. Moreover, SAP bound principally to hepatosplenic amyloid, whereas p5+14 was broadly distributed in numerous amyloid-laden anatomic sites, including the spleen, liver, pancreas, intestines and heart. These data support clinical validation of p5+14 as an amyloid radiotracer for patients in the US.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Amiloidosis/metabolismo , Péptidos , Componente Amiloide P Sérico/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Modelos Animales de Enfermedad , Radioisótopos de Yodo/farmacología , Marcaje Isotópico/métodos , Ratones , Péptidos/farmacocinética , Péptidos/farmacología , Trazadores Radiactivos , Componente Amiloide P Sérico/farmacología
16.
Mol Imaging Biol ; 18(4): 483-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26573301

RESUMEN

PURPOSE: Systemic peripheral amyloidosis is a rare disease in which misfolded proteins deposit in various organs. We have previously developed I-124 labeled peptide p5 + 14 as a tracer for positron emission tomography imaging of amyloid in patients. In this report, we now document the labeling efficiency, bioactivity, and stability of Tc-99m labeled p5 + 14 for single-photon emission computed tomography (SPECT) imaging of amyloidosis, validated in a mouse model of systemic amyloidosis. PROCEDURES: Radiochemical yield, purity, and biological activity of [(99m)Tc]p5 + 14 were documented by instant thin-layer chromatography (ITLC), SDS-PAGE and a quantitative amyloid fibril pulldown assay. The efficacy and stability were documented in serum amyloid protein A (AA) amyloid-bearing or wild-type (WT) control mice imaged with SPECT/X-ray computed tomography (CT) at two time points. The uptake and retention of [(99m)Tc]p5 + 14 in hepatosplenic amyloid was evaluated using region of interest (ROI) and tissue counting measurements. RESULTS: Tc-99m p5 + 14 was produced with a radiochemical yield of 75 % with greater than 90 % purity and biological activity comparable to that of radioiodinated peptide. AA amyloid was visualized by SPECT/CT imaging with specific uptake seen in amyloid-laden organs at levels ∼5 folds higher than in healthy mice. ROI analyses of decay-corrected SPECT/CT images showed <20 % loss of radiolabel from the 1 to 4 h imaging time points. Biodistribution data confirmed the specificity of the probe accumulation by amyloid-laden organs as compared to non-diseased tissues. CONCLUSION: [(99m)Tc]p5 + 14 is a specific and stable radiotracer for systemic amyloid in mice and may provide a convenient and inexpensive alternative to imaging of peripheral amyloidosis in patients.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Péptidos/química , Radiofármacos/química , Tecnecio/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Ratones Endogámicos BALB C , Ratones Transgénicos , Distribución Tisular , Tomografía Computarizada por Rayos X
17.
Amyloid ; 23(1): 8-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26701064

RESUMEN

UNLABELLED: In the US, there remains a need to develop a clinical method for imaging amyloid load in patients with systemic, visceral amyloidosis. The receptor for advanced glycation end products (RAGE), which exists as a transmembrane receptor and soluble variant, is found associated with a number of amyloid deposits in man. It is unclear whether amyloid-associated RAGE is the membrane or soluble form; however, given the affinity of RAGE for amyloid, we have examined the ability of soluble RAGE VC1 to specifically localize with systemic AA amyloid in mice. We further compared the reactivity of RAGE VC1 with that of the synthetic, amyloid-reactive peptide p5. METHODS: Binding of radiolabeled RAGE VC1 and p5 to synthetic amyloid fibrils was evaluated using in vitro "pulldown" assays in the presence or absence of RAGE ligands. Radioiodinated RAGE VC1 and technetium-99 m-labeled p5 were studied in mice with systemic AA amyloidosis using dual-energy SPECT/CT imaging, biodistribution and microautoradiography. RESULTS: Soluble RAGE VC1 competed with radioiodinated peptide p5 for binding to rVλ6Wil, Aß (1-40) and IAPP fibrils but not with the higher affinity peptide, p5R. Pre-incubation with AGE-BSA abrogated binding of VC1 and p5 to rVλ6Wil fibrils. Dual-energy SPECT/CT images and quantitative tissue biodistribution data showed that soluble RAGE VC1 specifically bound AA amyloid-laden organs in mice as effectively as peptide p5. Furthermore, microautoradiography confirmed that RAGE VC1 bound specifically to areas of Congo red-positive amyloid in mouse tissues but not in comparable tissues from control WT mice. CONCLUSION: Soluble RAGE VC1 and peptide p5 have similar ligand binding properties and specifically localize with visceral AA amyloid deposits in mice.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Proteína Amiloide A Sérica/metabolismo , Amiloidosis/metabolismo , Animales , Unión Competitiva , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacocinética , Ratones Endogámicos BALB C , Ratones Transgénicos , Péptidos/química , Péptidos/farmacocinética , Unión Proteica , Imagen Radiográfica por Emisión de Doble Fotón , Radiofármacos/química , Radiofármacos/farmacocinética , Receptor para Productos Finales de Glicación Avanzada/química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteína Amiloide A Sérica/química , Tecnecio/química , Tecnecio/farmacocinética , Distribución Tisular , Tomografía Computarizada por Rayos X
18.
Molecules ; 20(5): 7657-82, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25923515

RESUMEN

Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients.


Asunto(s)
Amiloide/metabolismo , Amiloidosis/diagnóstico , Medios de Contraste/farmacología , Péptidos/farmacología , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Secuencia de Aminoácidos , Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Animales , Biotinilación , Medios de Contraste/síntesis química , Medios de Contraste/química , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Humanos , Interleucina-6/biosíntesis , Interleucina-6/genética , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Imagen Molecular/métodos , Oligopéptidos/síntesis química , Oligopéptidos/química , Oligopéptidos/farmacología , Péptidos/síntesis química , Péptidos/química , Unión Proteica
19.
Peptides ; 60: 63-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25102446

RESUMEN

Dynamic molecular imaging provides bio-kinetic data that is used to characterize novel radiolabeled tracers for the detection of disease. Amyloidosis is a rare protein misfolding disease that can affect many organs. It is characterized by extracellular deposits composed principally of fibrillar proteins and hypersulfated proteoglycans. We have previously described a peptide, p5, which binds preferentially to amyloid deposits in a murine model of reactive (AA) amyloidosis. We have determined the whole body distribution of amyloid by molecular imaging techniques using radioiodinated p5. The loss of radioiodide from imaging probes due to enzymatic reaction has plagued the use of radioiodinated peptides and antibodies. Therefore, we studied iodine-124-labeled p5 by using dynamic PET imaging of both amyloid-laden and healthy mice to assess the rates of amyloid binding, the relevance of dehalogenation and the fate of the radiolabeled peptide. Rates of blood pool clearance, tissue accumulation and dehalogenation of the peptide were estimated from the images. Comparisons of these properties between the amyloid-laden and healthy mice provided kinetic profiles whose differences may prove to be indicative of the disease state. Additionally, we performed longitudinal SPECT/CT imaging with iodine-125-labeled p5 up to 72h post injection to determine the stability of the radioiodinated peptide when bound to the extracellular amyloid. Our data show that amyloid-associated peptide, in contrast to the unbound peptide, is resistant to dehalogenation resulting in enhanced amyloid-specific imaging. These data further support the utility of this peptide for detecting amyloidosis and monitoring potential therapeutic strategies in patients.


Asunto(s)
Amiloide/química , Imagen Molecular , Fragmentos de Péptidos/química , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Amiloide/metabolismo , Animales , Halogenación , Radioisótopos de Yodo , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/metabolismo
20.
Amyloid ; 21(1): 45-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24446872

RESUMEN

OBJECTIVE: Determine the role of phagocytosis in the deposition of acute phase SAA protein in peripheral organs as AA amyloid. METHODS: AA amyloidosis was induced by injection of amyloid enhancing factor (AEF) in huIL-6 transgenic mice. Clodronate liposomes were injected at different times, and the amyloid load evaluated by Congo red birefringence staining and monitoring with the amyloid specific probe (125)I-labeled peptide p5R. RESULTS: Injection of clodronate containing liposomes depleted Iba-1 positive and F4/80 positive phagocytic cells in liver and spleen for up to 5 days. Treatment prior to administration of intravenous AEF did not alter the pattern of deposition of the AEF in spleen, but inhibited the catabolism of the (125)I-labeled AEF. Clodronate treatment 1 day before or 1 day after AEF administration had little effect on AA amyloid accumulation at 2 weeks; however, mice treated with clodronate liposomes 5 days after AEF induction and evaluated at 2 weeks post-AEF induction showed reduced amyloid load relative to controls. At 6 weeks post-AEF there was no significant effect on amyloid load following a single clodronate treatment. CONCLUSION: Macrophages have been shown to be instrumental in both accumulation and clearance of AA amyloid after cessation of inflammation. Our data indicate that when SAA protein is continuously present, depletion of phagocytic cells during the early course of the disease progression temporarily reduces amyloid load.


Asunto(s)
Amiloidosis/terapia , Terapia de Inmunosupresión , Fagocitos/inmunología , Proteína Amiloide A Sérica/metabolismo , Amiloidosis/inducido químicamente , Amiloidosis/diagnóstico por imagen , Amiloidosis/inmunología , Animales , Ácido Clodrónico/administración & dosificación , Glicoproteínas , Inmunosupresores/administración & dosificación , Interleucina-6/genética , Hígado/inmunología , Hígado/patología , Ratones , Ratones Transgénicos , Cintigrafía , Radiofármacos/farmacocinética , Bazo/inmunología , Bazo/patología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...