Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Res Sq ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766114

RESUMEN

Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.

2.
ACS Nano ; 18(18): 11631-11643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652829

RESUMEN

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.


Asunto(s)
Proteína 58 DEAD Box , Inmunoterapia , Nanopartículas , Animales , Ratones , Nanopartículas/química , Humanos , Femenino , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Lípidos/química , Línea Celular Tumoral
3.
Cancer Lett ; 586: 216681, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311054

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad , Línea Celular Tumoral
4.
Trends Mol Med ; 30(1): 37-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872025

RESUMEN

Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.


Asunto(s)
Neoplasias , Receptores de Interleucina-8B , Ratones , Animales , Humanos , Receptores de Interleucina-8B/genética , Inflamación/metabolismo , Neutrófilos , Neoplasias/genética , Neoplasias/metabolismo , Ratones Noqueados
5.
Cytokine Growth Factor Rev ; 75: 40-56, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38102001

RESUMEN

CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.


Asunto(s)
Antígenos CD40 , Neoplasias , Humanos , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Ligando de CD40/farmacología , Neoplasias/tratamiento farmacológico , Linfocitos T/metabolismo , Citocinas
6.
Cancers (Basel) ; 15(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37509357

RESUMEN

Current methodologies for developing PDX in humanized mice in preclinical trials with immune-based therapies are limited by GVHD. Here, we compared two approaches for establishing PDX tumors in humanized mice: (1) PDX are first established in immune-deficient mice; or (2) PDX are initially established in humanized mice; then established PDX are transplanted to a larger cohort of humanized mice for preclinical trials. With the first approach, there was rapid wasting of PDX-bearing humanized mice with high levels of activated T cells in the circulation and organs, indicating immune-mediated toxicity. In contrast, with the second approach, toxicity was less of an issue and long-term human melanoma tumor growth and maintenance of human chimerism was achieved. Preclinical trials from the second approach revealed that rigosertib, but not anti-PD-1, increased CD8/CD4 T cell ratios in spleen and blood and inhibited PDX tumor growth. Resistance to anti-PD-1 was associated with PDX tumors established from tumors with limited CD8+ T cell content. Our findings suggest that it is essential to carefully manage immune editing by first establishing PDX tumors in humanized mice before expanding PDX tumors into a larger cohort of humanized mice to evaluate therapy response.

7.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37230537

RESUMEN

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. METHOD: We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. RESULTS: We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. CONCLUSIONS: Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment.


Asunto(s)
Linfocitos T CD4-Positivos , Inhibidores de Puntos de Control Inmunológico , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Linfocitos T Colaboradores-Inductores , Células Dendríticas
8.
Cell Rep ; 41(12): 111826, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543138

RESUMEN

Cancer therapies trigger diverse cellular responses, ranging from apoptotic death to acquisition of persistent therapy-refractory states such as senescence. Tipping the balance toward apoptosis could improve treatment outcomes regardless of therapeutic agent or malignancy. We find that inhibition of the mitochondrial protein BCL-xL increases the propensity of cancer cells to die after treatment with a broad array of oncology drugs, including mitotic inhibitors and chemotherapy. Functional precision oncology and omics analyses suggest that BCL-xL inhibition redirects the outcome of p53 transcriptional response from senescence to apoptosis, which likely occurs via caspase-dependent down-modulation of p21 and downstream cytostatic proteins. Consequently, addition of a BCL-2/xL inhibitor strongly improves melanoma response to the senescence-inducing drug targeting mitotic kinase Aurora kinase A (AURKA) in mice and patient-derived organoids. This study shows a crosstalk between the mitochondrial apoptotic pathway and cell cycle regulation that can be targeted to augment therapeutic efficacy in cancers with wild-type p53.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Apoptosis , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral
9.
Cancer Res Commun ; 2(7): 694-705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36381236

RESUMEN

Glutamine is the most abundant non-essential amino acid in blood stream; yet it's concentration in tumor interstitium is markedly lower than that in the serum, reflecting the huge demand of various cell types in tumor microenvironment for glutamine. While many studies have investigated glutamine metabolism in tumor epithelium and infiltrating immune cells, the role of glutamine metabolism in tumor blood vessels remains unknown. Here, we report that inducible genetic deletion of glutaminase (GLS) specifically in host endothelium, GLSECKO, impairs tumor growth and metastatic dissemination in vivo. Loss of GLS decreased tumor microvascular density, increased perivascular support cell coverage, improved perfusion, and reduced hypoxia in mammary tumors. Importantly, chemotherapeutic drug delivery and therapeutic efficacy were improved in tumor-bearing GLSECKO hosts or in combination with GLS inhibitor, CB839. Mechanistically, loss of GLS in tumor endothelium resulted in decreased leptin levels, and exogenous recombinant leptin rescued tumor growth defects in GLSECKO mice. Together, these data demonstrate that inhibition of endothelial glutamine metabolism normalizes tumor vessels, reducing tumor growth and metastatic spread, improving perfusion, and reducing hypoxia, and enhancing chemotherapeutic delivery. Thus, targeting glutamine metabolism in host vasculature may improve clinical outcome in patients with solid tumors.


Asunto(s)
Glutaminasa , Glutamina , Ratones , Animales , Glutaminasa/genética , Glutamina/metabolismo , Leptina , Línea Celular Tumoral
10.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806358

RESUMEN

Hyperactivation of PI3K/AKT/mTOR and MAPK/MEK/ERK signaling pathways is commonly observed in many cancers, including triple-negative breast cancer (TNBC) and melanoma. Moreover, the compensatory upregulation of the MAPK/MEK/ERK pathway has been associated with therapeutic resistance to targeted inhibition of the PI3K/AKT/mTOR pathway, and vice versa. The immune-modulatory effects of both PI3K and MAPK inhibition suggest that inhibition of these pathways might enhance response to immune checkpoint inhibitors (ICIs). ICIs have become the standard-of-care for metastatic melanoma and are recently an option for TNBC when combined with chemotherapy, but alternative options are needed when resistance develops. In this review, we present the current mechanistic understandings, along with preclinical and clinical evidence, that outline the efficacy and safety profile of combinatorial or sequential treatments with PI3K inhibitors, MAPK inhibitors, and ICIs for treatment of malignant melanoma and metastatic TNBC. This approach may present a potential strategy to overcome resistance in patients who are a candidate for ICI therapy with tumors harboring either or both of these pathway-associated mutations.


Asunto(s)
Melanoma , Neoplasias de la Mama Triple Negativas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama Triple Negativas/patología
11.
J Health Care Poor Underserved ; 33(1): 419-436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153231

RESUMEN

Cancer health disparities among populations are the result of a combination of socioeconomic, environmental, behavioral, and biological factors, which affect cancer incidence, prevalence, mortality, survivorship, financial burden, and screening rates. The long-standing Meharry Medical College (MMC), Vanderbilt-Ingram Cancer Center (VICC), Tennessee State University (TSU) Cancer Partnership has built an exceptional cancer research and training environment to support the efforts of diverse investigators in addressing disparities. Over the past 20 years, collaborative partnership efforts across multiple disciplines have supported research into the determinants of cancer health disparities at a National Cancer Institute-designated comprehensive cancer center (VICC) along with enhancing research infrastructure and training at MMC and TSU, two institutions that serve predominantly underserved populations and underrepresented students. Moreover, the geographical placement of this partnership in Tennessee, a region with some of the highest cancer incidence and mortality in the United States, has provided an especially important opportunity to positively affect outcomes for cancer patients.


Asunto(s)
Neoplasias , Humanos , Neoplasias/epidemiología , Neoplasias/terapia , Investigadores , Tennessee/epidemiología , Estados Unidos/epidemiología , Universidades , Poblaciones Vulnerables
12.
NPJ Precis Oncol ; 6(1): 6, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058553

RESUMEN

Acquired resistance to BRAF/MEK-targeted therapy occurs in the majority of melanoma patients that harbor BRAF mutated tumors, leading to relapse or progression and the underlying mechanism is unclear in many cases. Using multiplex immunohistochemistry and spatial imaging analysis of paired tumor sections obtained from 11 melanoma patients prior to BRAF/MEK-targeted therapy and when the disease progressed on therapy, we observed a significant increase of tumor cellularity in the progressed tumors and the close association of SOX10+ melanoma cells with CD8+ T cells negatively correlated with patient's progression-free survival (PFS). In the TCGA-melanoma dataset (n = 445), tumor cellularity exhibited additive prognostic value in the immune score signature to predict overall survival in patients with early-stage melanoma. Moreover, tumor cellularity prognoses OS independent of immune score in patients with late-stage melanoma.

13.
Br J Ophthalmol ; 106(2): 288-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33972235

RESUMEN

BACKGROUND: Current melphalan-based intravitreal regimens for retinoblastoma (RB) vitreous seeds cause retinal toxicity. We assessed the efficacy and toxicity of topotecan monotherapy compared with melphalan in our rabbit model and patient cohort. METHODS: Rabbit experiments: empiric pharmacokinetics were determined following topotecan injection. For topotecan (15 µg or 30 µg), melphalan (12.5 µg) or saline, toxicity was evaluated by serial electroretinography (ERG) and histopathology, and efficacy against vitreous seed xenografts was measured by tumour cell reduction and apoptosis induction. PATIENTS: retrospective cohort study of 235 patients receiving 990 intravitreal injections of topotecan or melphalan. RESULTS: Intravitreal topotecan 30 µg (equals 60 µg in humans) achieved the IC90 across the rabbit vitreous. Three weekly topotecan injections (either 15 µg or 30 µg) caused no retinal toxicity in rabbits, whereas melphalan 12.5 µg (equals 25 µg in humans) reduced ERG amplitudes 42%-79%. Intravitreal topotecan 15 µg was equally effective to melphalan to treat WERI-Rb1 cell xenografts in rabbits (96% reduction for topotecan vs saline (p=0.004), 88% reduction for melphalan vs saline (p=0.004), topotecan vs melphalan, p=0.15). In our clinical study, patients received 881 monotherapy injections (48 topotecan, 833 melphalan). Patients receiving 20 µg or 30 µg topotecan demonstrated no significant ERG reductions; melphalan caused ERG reductions of 7.6 µV for every injection of 25 µg (p=0.03) or 30 µg (p<0.001). Most patients treated with intravitreal topotecan also received intravitreal melphalan at some point during their treatment course. Among those eyes treated exclusively with topotecan monotherapy, all eyes were salvaged. CONCLUSIONS: Taken together, these experiments suggest that intravitreal topotecan monotherapy for the treatment of RB vitreous seeds is non-toxic and effective.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Animales , Antineoplásicos Alquilantes/toxicidad , Humanos , Inyecciones Intravítreas , Melfalán/toxicidad , Siembra Neoplásica , Conejos , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Estudios Retrospectivos , Topotecan/toxicidad , Cuerpo Vítreo/patología
14.
Cancers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944914

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells derived from immature myeloid cells. These cells are often associated with poor responses to cancer therapy, including immunotherapy, in a variety of tumor types. The C-X-C chemokine receptor 2 (CXCR2) signaling axis plays a key role in the migration of immunosuppressive MDSCs into the tumor microenvironment (TME) and the pre-metastatic niche. MDSCs impede the efficacy of immunotherapy through a variety of mechanisms. Efforts to target MDSCs by blocking CXCR2 is an active area of research as a method for improving existing and novel immunotherapy strategies. As immunotherapies gain approval for a wider array of clinical indications, it will become even more important to understand the efficacy of CXCR2 inhibition in combating immunotherapy resistance at different stages of tumor progression.

15.
Invest Ophthalmol Vis Sci ; 62(14): 8, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757417

RESUMEN

Purpose: Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity. Methods: In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity experiments were performed to determine the 90% inhibitory concentration (IC90). Functional toxicity by electroretinography and structural toxicity by optical coherence tomography (OCT), OCT angiography, and histopathology were evaluated in rabbits following three injections of belinostat 350 µg (2× IC90) or 700 µg (4× IC90), compared with melphalan 12.5 µg (rabbit equivalent of the human dose). The relative efficacy of intravitreal belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was directly quantified. RNA sequencing was used to assess belinostat-induced changes in RB cell gene expression. Results: The maximum nontoxic dose of belinostat was 350 µg, which caused no reductions in electroretinography parameters, retinal microvascular loss on OCT angiography, or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity. Belinostat 350 µg (equivalent to 700 µg in the larger human eye) was equally effective at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan (95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001; belinostat vs. melphalan, P = 0.10). Even 700 µg belinostat (equivalent to 1400 µg in humans) caused only minimal toxicity. Widespread changes in gene expression resulted. Conclusions: Molecularly targeted inhibition of HDACs with intravitreal belinostat was equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat may therefore be an attractive agent to pursue clinically for intravitreal treatment of retinoblastoma.


Asunto(s)
Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Siembra Neoplásica , Retina/efectos de los fármacos , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Animales , Anexina A5 , Antineoplásicos Alquilantes/uso terapéutico , Electrorretinografía , Angiografía con Fluoresceína , Inhibidores de Histona Desacetilasas/farmacocinética , Inhibidores de Histona Desacetilasas/toxicidad , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/toxicidad , Inyecciones Intravítreas , Dosis Máxima Tolerada , Melfalán/uso terapéutico , Conejos , Retina/fisiología , Neoplasias de la Retina/diagnóstico , Neoplasias de la Retina/fisiopatología , Retinoblastoma/diagnóstico , Retinoblastoma/fisiopatología , Estudios Retrospectivos , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidad , Tomografía de Coherencia Óptica , Cuerpo Vítreo/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Cancer ; 20(1): 146, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758832

RESUMEN

HIGHLIGHTS: CD40 expression correlates with the type I anti-tumor response and better survival. Pan-cancer bioinformatics characterization reveals reduced CD40 expression in 11 cancer types, including RASmut melanoma compared to nevi. RAS mutation correlates with reduced CD40 expression in malignant melanoma. CD40 expression is associated with better response to immune checkpoint blockade therapy in melanoma.


Asunto(s)
Antígenos CD40/genética , Antígenos CD40/metabolismo , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Neoplasias/etiología , Neoplasias/metabolismo , Biomarcadores de Tumor , Terapia Combinada , Manejo de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Terapia Molecular Dirigida , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
17.
Transl Vis Sci Technol ; 10(11): 10, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495330

RESUMEN

Purpose: Through controlled comparative rabbit experiments and parallel patient studies, our purpose was to understand mechanisms underlying differences in efficacy and toxicity between intra-arterial chemotherapy (IAC) and intravenous chemotherapy (IVC). Methods: In rabbits, ocular tissue drug levels were measured following IAC and IVC. Retinal toxicity was assessed using electroretinography, fluorescein angiography, optical coherence tomography (OCT) and OCT angiography. Efficacy to eradicate retinoblastoma orthotopic xenografts was compared. In IAC and IVC patients, we measured blood carboplatin pharmacokinetics and compared efficacy and toxicity. Results: In rabbits receiving IAC, maximum carboplatin levels were 134 times greater in retina (P = 0.01) and 411 times greater in vitreous (P < 0.001), and total carboplatin (area under the curve) was 123 times greater in retina (P = 0.005) and 131 times greater in vitreous (P = 0.02) compared with IVC. Melphalan levels were 12 times greater (P = 0.003) in retina and 26 times greater in vitreous (P < 0.001) for IAC. Blood levels were not different. IAC melphalan (but not IV melphalan or IV carboplatin, etoposide, and vincristine) caused widespread apoptosis in retinoblastoma xenografts but no functional retinal toxicity or cytopenias. In patients, blood levels following IVC were greater (P < 0.001) but, when adjusted for treatment dose, were not statistically different. Per treatment cycle in patients, IVC caused higher rates of anemia (0.32 ± 0.29 vs. 0.01 ± 0.04; P = 0.0086), thrombocytopenia (0.5 ± 0.42 vs. 0.0 ± 0.0; P = 0.0042), and neutropenia (0.58 ± 0.3 vs. 0.31 ± 0.25; P = 0.032) but lower treatment success rates (P = 0.0017). Conclusions: The greater efficacy and lower systemic toxicity with IAC appear to be attributable to the greater ocular-to-systemic drug concentration ratio compared with IVC. Translational Relevance: Provides an overarching hypothesis for a mechanism of efficacy/toxicity to guide future drug development.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Infusiones Intraarteriales , Modelos Animales , Conejos , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico
18.
Mol Cancer ; 20(1): 85, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092233

RESUMEN

BACKGROUND: While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS: Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS: RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS: Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION: NCT01205815 (Sept 17, 2010).


Asunto(s)
Antineoplásicos/farmacología , Antígenos CD40/biosíntesis , Glicina/análogos & derivados , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/patología , Sulfonas/farmacología , Proteínas ras/antagonistas & inhibidores , Animales , Femenino , Glicina/farmacología , Humanos , Masculino , Melanoma/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/antagonistas & inhibidores
19.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069042

RESUMEN

OBJECTIVES: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI. METHODS: C57BL/6 mice were orthotopically implanted with syngeneic luminal/triple-negative-like PyMT cells exhibiting high endogenous PI3K activity. Tumor growth in response to treatment with anti-PD-1 + anti-CTLA-4 (ICI), paclitaxel (PTX), and either the PI3Kα-specific inhibitor alpelisib, the pan-PI3K inhibitor copanlisib, or the broad spectrum PI3K/mTOR inhibitor gedatolisib was evaluated in reference to monotherapy or combinations of these therapies. Effects of these therapeutics on intratumoral immune populations were determined by multicolor FACS. RESULTS: Treatment with alpelisib + PTX inhibited PyMT tumor growth and increased tumor-infiltrating granulocytes but did not significantly affect the number of tumor-infiltrating CD8+ T cells and did not synergize with ICI. Copanlisib + PTX + ICI significantly inhibited PyMT growth and increased activation of intratumoral CD8+ T cells as compared to ICI alone, yet did not inhibit tumor growth more than ICI alone. In contrast, gedatolisib + ICI resulted in significantly greater inhibition of tumor growth compared to ICI alone and induced durable dendritic-cell, CD8+ T-cell, and NK-cell responses. Adding PTX to this regimen yielded complete regression in 60% of tumors. CONCLUSION: PI3K/mTOR inhibition plus PTX heightens response to ICI and may provide a viable therapeutic approach for treatment of metastatic BC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Inhibidores de Puntos de Control Inmunológico , Animales , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Granulocitos/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Morfolinas/administración & dosificación , Paclitaxel/administración & dosificación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Pirimidinas/administración & dosificación , Quinazolinas/administración & dosificación , Tiazoles/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Resultado del Tratamiento , Triazinas/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...