Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Rep ; 13(1): 20881, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012245

RESUMEN

Anecdotal reports state that wellness treatments for horses, such as massage therapy, relaxes the treated animal. Massage therapists and horse owners typically report an "improvement" without verifying or quantifying the treatment results. This paper shows that the effect of wellness treatment and stress release can be measured with pupillometry. One of the horse's pupils was photographed at the beginning and end of the treatment to determine the changes in the balance between the sympathetic and parasympathetic system activities. The owners assigned horses to two experimental groups: animals receiving a massage (N = 18) and horses standing with a person next to the horse for the time of a massage in the stable lane (N = 10). Six animals in the experimental group were excluded from the analysis because the pupils could not be traced. We opened the images of the pupil with Fiji (ImageJ) and used the elliptical selection tool to measure the pupils' and iris' areas. The ratio between the pupils' aperture and the iris' area was a normalized measure for pupil size. At the end of the experiment, we compared the normalized size of the pupils with a two-tailed paired t-test within groups and a two-tailed t-test between groups. For the experimental group, it was before and after the treatment, and for the control group, before and after the horse was placed in the stable lane. Comparisons between the experimental and control groups were made at the procedure's beginning and end. The treatment significantly decreased the normalized pupil area in the experimental group, on average, by a factor of 0.78 ± 0.15 (P = 0.042). For the horses in the control group, the pupil size increased, on average, by a factor of 1.14 ± 018. Changes were statistically not significant (P = 0.19). The initial pupil size of the horses in the experimental group was 1.88 times larger than that in the control group. After the treatment, the difference was reduced to a factor of 1.25. At the beginning of the experiment, the horses in the experimental group had, on average, larger pupil sizes than the horses in the control group, indicating that the horses in the experimental group were more stressed before the treatment than the control animals. The observed changes in pupil size in the experimental group likely resulted from enhanced parasympathetic and diminished sympathetic activity resulting from the treatment. Observed changes in pupil size agree with the anecdotal horse owner reports and the therapist's treatment notes.


Asunto(s)
Pupila , Deportes , Humanos , Animales , Caballos , Masaje , Iris
2.
Sci Rep ; 13(1): 14667, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673944

RESUMEN

One in six Americans suffers from hearing loss. While treatment with amplification is possible for many, the acceptance rate of hearing aids is low. Poor device fitting is one of the reasons. The hearing aid fitting starts with a detailed hearing assessment by a trained audiologist in a sound-controlled environment, using standard equipment. The hearing aid is adjusted step-by-step, following well-described procedures based on the audiogram. However, for many patients in rural settings, considerable travel time to a hearing center discourages them from receiving a hearing test and treatment. We hypothesize that hearing assessment with the patient's hearing aid can reliably substitute the hearing test in the clinic. Over-the-counter hearing aids could be programmed from a distance and fine-tuned by the hearing aid wearer. This study shows that a patient-controlled hearing assessment via a hearing aid in a non-clinical setting is not statistically different from an audiologist-controlled hearing assessment in a clinical setting. The differences in hearing obtained with our device and the Gaussian Process are within 3 dB of the standard audiogram. At 250 Hz, the sound delivery with the hearing aid used in this study added an additional reduction of sound level, which was not compensated.


Asunto(s)
Sordera , Audífonos , Humanos , Audición , Pruebas Auditivas , Sonido
3.
Biomed Pharmacother ; 163: 114674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37435721

RESUMEN

No medical interventions for noise induced hearing loss (NIHL) are approved by the Food and Drug Administration (USA). Here, we evaluate statins in CBA/CaJ mice as potential drugs for hearing loss. Direct delivery of fluvastatin to the cochlea and oral delivery of lovastatin were evaluated. Baseline hearing was assessed using Auditory Brain Stem Responses (ABRs). For fluvastatin, a cochleostomy was surgically created in the basal turn of the cochlea by a novel, laser-based procedure, through which a catheter attached to a mini-osmotic pump was inserted. The pump was filled with a solution of 50 µM fluvastatin+carrier or with the carrier alone for continuous delivery to the cochlea. Mice were exposed to one octave band noise (8-16 kHz x 2 h x 110 dB SPL). In our past work with guinea pigs, fluvastatin protected in the contralateral cochlea. In this study in CBA/CaJ mice, hearing was also assessed in the contralateral cochlea 1-4 weeks after noise exposure. At two weeks post exposure, ABR thresholds at 4, 8, 12, 16, and 32 kHz were elevated, as expected, in the noise+carrier alone treated mice by approximately 9-, 17-, 41-, 29-, and 34-dB, respectively. Threshold elevations were smaller in mice treated with noise+fluvastatin to about 2-, 6-, 20-,12- and 12-dB respectively. Survival of inner hair cell synapses were not protected by fluvastatin over these frequencies. Lovastatin delivered by gavage showed lower threshold shifts than with carrier alone. These data show that direct and oral statin delivery protects mice against NIHL.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Estados Unidos , Ratones , Animales , Cobayas , Ratones Endogámicos CBA , Pérdida Auditiva Provocada por Ruido/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Fluvastatina/farmacología , Lovastatina , Excipientes
4.
Sci Rep ; 12(1): 17125, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224204

RESUMEN

About 70% of people with osteogenesis imperfecta (OI) experience hearing loss. There is no cure for OI, and therapies to ameliorate hearing loss rely on conventional treatments for auditory impairments in the general population. The success rate of these treatments in the OI population with poor collagenous tissues is still unclear. Here, we conduct a systematic review and meta-analysis on the efficacy of treatments addressing hearing loss in OI. This study conforms to the reporting standards of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Data sources include published articles in Medline via PubMed, Web of Science, Scopus, and Embase, from their inception to November 2020. Studies included individuals with OI undergoing a hearing loss treatment, having pre- and postoperative objective assessment of hearing function at a specified follow-up length. Our search identified 1144 articles, of which 67 were reviewed at full-text screening. A random-effects meta-analysis was conducted on the selected articles (n = 12) of people with OI that underwent stapes surgery. Success was assessed as the proportion of ears with a postoperative Air-Bone Gap (ABG) ≤ 10 dB. A systematic review was conducted on the remaining articles (n = 13) reporting on other treatments. No meta-analysis was conducted on the latter due to the low number of articles on the topic and the nature of single case studies. The meta-analysis shows that stapes surgeries have a low success rate of 59.08 (95% CI 45.87 to 71.66) in the OI population. The systematic review revealed that cochlear implants, bone-anchored hearing aids, and other implantable hearing aids proved to be feasible, although challenging, in the OI population, with only 2 unsuccessful cases among the 16 reviewed single cases. This analysis of published data on OI shows poor clinical outcomes for the procedures addressing hearing loss. Further studies on hearing loss treatments for OI people are needed. Notably, the mechanisms of hearing loss in OI need to be determined to develop successful and possibly non-invasive treatment strategies.


Asunto(s)
Implantación Coclear , Sordera , Pérdida Auditiva , Osteogénesis Imperfecta , Cirugía del Estribo , Sordera/cirugía , Pérdida Auditiva/cirugía , Pérdida Auditiva/terapia , Humanos , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/terapia
5.
Front Bioeng Biotechnol ; 10: 983510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299283

RESUMEN

The middle ear is part of the ear in all terrestrial vertebrates. It provides an interface between two media, air and fluid. How does it work? In mammals, the middle ear is traditionally described as increasing gain due to Helmholtz's hydraulic analogy and the lever action of the malleus-incus complex: in effect, an impedance transformer. The conical shape of the eardrum and a frequency-dependent synovial joint function for the ossicles suggest a greater complexity of function than the traditional view. Here we review acoustico-mechanical measurements of middle ear function and the development of middle ear models based on these measurements. We observe that an impedance-matching mechanism (reducing reflection) rather than an impedance transformer (providing gain) best explains experimental findings. We conclude by considering some outstanding questions about middle ear function, recognizing that we are still learning how the middle ear works.

6.
PLoS One ; 16(8): e0255821, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34428235

RESUMEN

As the resolution of 3D printing techniques improves, the possibility of individualized, 3-ossicle constructions adds a new dimension to middle ear prostheses. In order to optimize these designs, it is essential to understand how the ossicles and ligaments work together to transmit sound, and thus how ligaments should be replicated in a middle ear reconstruction. The middle ear ligaments are thought to play a significant role in maintaining the position of the ossicles and constraining axis of rotation. Paradoxically, investigations of the role of ligaments to date have shown very little impact on middle ear sound transmission. We explored the role of the two attachments in the gerbil middle ear analogous to human ligaments, the posterior incudal ligament and the anterior mallear process, severing both attachments and measuring change in hearing sensitivity. The impact of severing the attachments on the position of the ossicular chain was visualized using synchrotron microtomography imaging of the middle ear. In contrast to previous studies, a threshold change on the order of 20 dB across a wide range of frequencies was found when both ligaments were severed. Concomitantly, a shift in position of the ossicles was observed from the x-ray imaging and 3D renderings of the ossicular chain. These findings contrast with previous studies, demonstrating that these ligaments play a significant role in the transmission of sound through the middle ear. It appears that both mallear and incudal ligaments must be severed in order to impair sound transmission. The results of this study have significance for middle ear reconstructive surgery and the design of 3D-printed three-ossicle biocompatible prostheses.


Asunto(s)
Oído Medio/fisiología , Ligamentos/fisiología , Prótesis Osicular , Estimulación Acústica , Potenciales de Acción , Animales , Umbral Auditivo , Materiales Biocompatibles/química , Cóclea/fisiología , Oído Medio/diagnóstico por imagen , Oído Medio/cirugía , Femenino , Gerbillinae , Láseres de Gas , Ligamentos/diagnóstico por imagen , Masculino , Impresión Tridimensional , Microtomografía por Rayos X
7.
Sci Rep ; 11(1): 12231, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112826

RESUMEN

Nicolelis wrote in his 2003 review on brain-machine interfaces (BMIs) that the design of a successful BMI relies on general physiological principles describing how neuronal signals are encoded. Our study explored whether neural information exchanged between brains of different species is possible, similar to the information exchange between computers. We show for the first time that single words processed by the guinea pig auditory system are intelligible to humans who receive the processed information via a cochlear implant. We recorded the neural response patterns to single-spoken words with multi-channel electrodes from the guinea inferior colliculus. The recordings served as a blueprint for trains of biphasic, charge-balanced electrical pulses, which a cochlear implant delivered to the cochlear implant user's ear. Study participants completed a four-word forced-choice test and identified the correct word in 34.8% of trials. The participants' recognition, defined by the ability to choose the same word twice, whether right or wrong, was 53.6%. For all sessions, the participants received no training and no feedback. The results show that lexical information can be transmitted from an animal to a human auditory system. In the discussion, we will contemplate how learning from the animals might help developing novel coding strategies.


Asunto(s)
Percepción Auditiva , Interfaces Cerebro-Computador , Audición , Modelos Biológicos , Percepción del Habla , Habla , Animales , Fenómenos Electrofisiológicos , Cobayas , Humanos , Reproducibilidad de los Resultados
8.
Laryngoscope Investig Otolaryngol ; 6(2): 310-319, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869763

RESUMEN

OBJECTIVES: We provide an appraisal of recent research on stimulation of the auditory system with light. In particular, we discuss direct infrared stimulation and ongoing controversies regarding the feasibility of this modality. We also discuss advancements and barriers to the development of an optical cochlear implant. METHODS: This is a review article that covers relevant animal studies. RESULTS: The auditory system has been stimulated with infrared light, and in a much more spatially selective manner than with electrical stimulation. However, there are experiments from other labs that have not been able to reproduce these results. This has resulted in an ongoing controversy regarding the feasibility of infrared stimulation, and the reasons for these experimental differences still require explanation. The neural response characteristics also appear to be much different than with electrical stimulation. The electrical stimulation paradigms used for modern cochlear implants do not apply well to optical stimulation and new coding strategies are under development. Stimulation with infrared light brings the risk of heat accumulation in the tissue at high pulse repetition rates, so optimal pulse shapes and combined optical/electrical stimulation are being investigated to mitigate this. Optogenetics is another promising technique, which makes neurons more sensitive to light stimulation by inserting light sensitive ion channels via viral vectors. Challenges of optogenetics include the expression of light sensitive channels in sufficient density in the target neurons, and the risk of damaging neurons by the expression of a foreign protein. CONCLUSION: Optical stimulation of the nervous system is a promising new field, and there has been progress toward the development of a cochlear implant that takes advantage of the benefits of optical stimulation. There are barriers, and controversies, but so far none that seem intractable. LEVEL OF EVIDENCE: NA (animal studies and basic research).

9.
J Struct Biol ; 213(2): 107708, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33581284

RESUMEN

Osteogenesis imperfecta (OI or brittle bone disease) is a group of genetic disorders of the connective tissues caused mainly by mutations in the genes encoding collagen type I. Clinical manifestations of OI include skeletal fragility, bone deformities, and severe functional disabilities, such as hearing loss. Progressive hearing loss, usually beginning in childhood, affects approximately 70% of people with OI with more than half of the cases involving the inner ear. There is no cure for OI nor a treatment to ameliorate its corresponding hearing loss, and very little is known about the properties of OI ears. In this study, we investigate the morphology of the otic capsule and the cochlea in the inner ear of the oim mouse model of OI. High-resolution 3D images of 8-week old oim and WT inner ears were acquired using synchrotron microtomography. Volumetric morphometric measurements were conducted for the otic capsule, its intracortical canal network and osteocyte lacunae, and for the cochlear spiral ducts. Our results show that the morphology of the cochlea is preserved in the oim ears at 8 weeks of age but the otic capsule has a greater cortical thickness and altered intracortical bone porosity, with a larger number and volume density of highly branched canals in the oim otic capsule. These results portray a state of compromised bone quality in the otic capsule of the oim mice that may contribute to their hearing loss.


Asunto(s)
Oído Interno/diagnóstico por imagen , Oído Interno/fisiopatología , Osteogénesis Imperfecta/fisiopatología , Animales , Densidad Ósea , Cóclea/diagnóstico por imagen , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Tomografía con Microscopio Electrónico/métodos , Osteón/diagnóstico por imagen , Osteón/fisiopatología , Masculino , Ratones Mutantes , Osteogénesis Imperfecta/etiología , Sincrotrones
10.
Lasers Surg Med ; 53(7): 986-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33476051

RESUMEN

BACKGROUND AND OBJECTIVES: The number of perceptually independent channels to encode acoustic information is limited in contemporary cochlear implants (CIs) because of the current spread in the tissue. It has been suggested that neighboring electrodes have to be separated in humans by a distance of more than 2 mm to eliminate significant overlap of the electric current fields and subsequent interaction between the channels. It has also been argued that an increase in the number of independent channels could improve CI user performance in challenging listening environments, such as speech in noise, tonal languages, or music perception. Optical stimulation has been suggested as an alternative modality for neural stimulation because it is spatially selective. This study reports the results of experiments designed to quantify the interaction between neighboring optical sources in the cochlea during stimulation with infrared radiation. STUDY DESIGN/MATERIALS AND METHODS: In seven adult albino guinea pigs, a forward masking method was used to quantify the interaction between two neighboring optical sources during stimulation. Two optical fibers were placed through cochleostomies into the scala tympani of the basal cochlear turn. The radiation beams were directed towards different neuron populations along the spiral ganglion. Optically evoked compound action potentials were recorded for different radiant energies and distances between the optical fibers. The outcome measure was the radiant energy of a masker pulse delivered 3 milliseconds before a probe pulse to reduce the response evoked by the probe pulse by 3 dB. Results were compared for different distances between the fibers placed along the cochlea. RESULTS: The energy required to reduce the probe's response by 3 dB increased by 20.4 dB/mm and by 26.0 dB/octave. The inhibition was symmetrical for the masker placed basal to the probe (base-to-apex) and the masker placed apical to the probe (apex-to-base). CONCLUSION: The interaction between neighboring optical sources during infrared laser stimulation is less than the interaction between neighboring electrical contacts during electrical stimulation. Previously published data for electrical stimulation reported an average current spread in human and cat cochleae of 2.8 dB/mm. With the increased number of independent channels for optical stimulation, it is anticipated that speech and music performance will improve. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Asunto(s)
Cóclea , Implantes Cocleares , Animales , Estimulación Eléctrica , Cobayas , Rayos Infrarrojos , Fibras Ópticas
11.
Prog Biophys Mol Biol ; 162: 89-100, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33359901

RESUMEN

Neural stimulation with infrared radiation has been explored for brain tissue, peripheral nerves, and cranial nerves including the auditory nerve. Initial experiments were conducted at wavelengths between λ = 1850 and λ = 2140 nm and the radiant energy was delivered with square pulses. Water absorption of the infrared radiation at λ = 1860 nm is similar to absorption at wavelengths between λ = 1310 and λ = 1600 nm, which are in the radiation wavelength range used for the communication industry. Technology for those wavelengths has already been developed and miniaturized and is readily available. The possibility of the infrared light to evoke compound action potentials (CAP) in the cochlea at λ = 1,375, λ = 1,460, and λ = 1550 nm was explored and compared to that of λ = 1860 nm in guinea pigs. Furthermore, rise and fall times of the 100 µs long pulses were changed and four basic pulse shapes (square, triangular, ramp-up, and ramp-down) were explored in their ability to evoke a CAP. In animals with pure tone threshold averages (PTAs) above 70 dB SPL, the results show that the favorable wavelength is λ = 1460 nm to reach threshold for stimulation and λ = 1375 nm or λ = 1460 nm for obtaining maximum amplitude. The most favorable pulse shape is either ramp-up or triangular.


Asunto(s)
Cóclea , Nervio Coclear , Potenciales de Acción , Animales , Cobayas , Frecuencia Cardíaca , Rayos Infrarrojos
12.
Proc Natl Acad Sci U S A ; 117(24): 13571-13579, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482850

RESUMEN

Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a "9 + 2" microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a , exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a , MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.


Asunto(s)
Cuerpos Basales/metabolismo , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Axonema/metabolismo , Polaridad Celular , Trastornos de la Motilidad Ciliar/genética , Células Epiteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Xenopus
13.
Hear Res ; 391: 107948, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32283439

RESUMEN

This technical note describes synchrotron x-ray fluorescence microscopy (XFM) as a method for measuring the concentrations of different elements in cross-sections of the ear at extremely high resolution. This method could be of great importance for addressing many open questions in hearing research. XFM uses synchrotron radiation to evoke emissions from many biologically relevant elements in the tissue. The intensity and wavelength of the emitted radiation provide a fingerprint of the tissue composition that can be used to measure the concentration of the elements in the sampled location. Here, we focus on energies that target biologically-relevant elements of the periodic table between magnesium and zinc. Since a highly focused x-ray beam is used, the spot size is well below 1 µm and the samples can be scanned at a nanometer lateral resolution. This study shows that measurement of the concentrations of different elements is possible in a mid-modiolar cross-section of a mouse cochlea. Images are presented that indicate potassium and chloride "hot spots" in the spiral ligament and the spiral limbus, providing experimental evidence for the potassium recycling pathway and showing the cochlear structures involved. Scans of a section obtained from the incus, one of the middle ear ossicles, in a developing mouse have shown that zinc is not uniformly distributed This supports the hypothesis that zinc plays a special role in the process of ossification. Although limited by sophisticated sample preparation and sectioning, the method provides ample exciting opportunities, to understand the role of genetics and epigenetics on hearing mechanisms in ontogeny and phylogeny.


Asunto(s)
Oído Interno/metabolismo , Iones/metabolismo , Microscopía Fluorescente , Espectroscopía de Absorción de Rayos X , Factores de Edad , Animales , Ratones Endogámicos C57BL , Sincrotrones
14.
Am J Cancer Res ; 10(12): 4416-4434, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33415008

RESUMEN

Cisplatin is a potent drug used in about 40% of cancer treatment but also leads to severe deafness in 60-80% of the cases. Although the mechanism is known to be related to the accumulation of reactive oxygen species (ROS), no drug or FDA approved treatment is currently available to prevent cisplatin ototoxicity. With this study, we show for the first time that honokiol (HNK), a pleiotropic poly-phenol prevents cisplatin-induced hearing loss. HNK also improves the wellbeing of the mice during the treatment, determined by the increase in the number of surviving animals. In a transgenic tumor mouse model, HNK does not hinder cisplatin's antitumor effect. The mechanism is related to the activation of sirtuin 3, a deacetylase in mitochondria essential for ROS detoxification. We expect a paradigm shift in cisplatin chemotherapy based on the current study and future clinical trials, where honokiol is applied to reduce side effects including hearing loss.

15.
Hear Res ; 379: 69-78, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31103815

RESUMEN

Across the world, dozens of outbred Hartley guinea pig stocks are used for auditory experiments. The genetic makeup of these different stocks will differ due to differences in breeding protocols, history and genetic drift. In fact, outbred breeding protocols are not intended to produce genetically identical animals, neither across breeders, nor across time. For this reason, it is unclear how reproducible experimental results are likely to be using animals from different stocks. We evaluated the consistency of cochlear function using both clicks and tones in Hartley guinea pigs as a function of breeder (Kuiper and Charles River) and sex using archival Auditory Brain Stem Response (ABR) data and tissue from our own laboratory. Sound levels required to reach baseline threshold for click-induced ABRs were similar between male Charles River and male Kuiper guinea pig stocks. However, the median and average thresholds after exposure to high level noise were larger in the Kuiper population than in the Charles River population with corresponding threshold shifts higher in the Kuiper than in the Charles River animals. We evaluated the relationship between pure-tone thresholds and sex, age, breeder stock, left or right cochleas, weight and 5 test frequencies before and after noise exposure using a linear mixed statistical model. Across all frequencies, the effect of breeder on baseline threshold is statistically significant, with effect sizes most pronounced at the lower frequencies before exposure to noise. After noise exposure, the differences are minimal in the model, indicating that differences in threshold shift are chiefly due to differences in initial baseline hearing. However, a contingency calculation comparing response/no response at the highest speaker output at 32 kHz gave a statistically significant difference between the stocks: 28% of Kuiper cochleas responded to the highest output of the speaker as compared with 71.4% of Charles River cochleas, indicating that noise exposure induced a larger threshold shift in a greater proportion of Kuiper animals. Using our archival cochlear tissue from these studies, we confirmed the sex of each animal by PCR, then compared males and females of the Kuiper stock. Across all baseline frequencies, the effect of sex on threshold is statistically significant, with no noticeable difference after exposure. The effect sizes for baseline thresholds are most pronounced at lower frequencies. These data demonstrate that Hartley guinea pig stocks from different breeders are not uniform in their auditory characteristics, and that due to these differences, results and conclusions can differ among laboratories. Moreover, within a single stock, males and females can provide different data, confirming that male and female animals must be individually evaluated in any auditory protocol.


Asunto(s)
Umbral Auditivo/fisiología , Cobayas/fisiología , Audición/fisiología , Estimulación Acústica , Animales , Audiometría de Tonos Puros , Cruzamiento , Cóclea/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Cobayas/clasificación , Cobayas/genética , Pérdida Auditiva Provocada por Ruido/fisiopatología , Endogamia , Modelos Lineales , Masculino , Ruido , Reproducibilidad de los Resultados , Factores Sexuales , Especificidad de la Especie
16.
Neurophotonics ; 5(4): 045002, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30397630

RESUMEN

An emerging method in the field of neural stimulation is the use of photons to activate neurons. The possible advantage of optical stimulation over electrical is attributable to its spatially selective activation of small neuron populations, which is promising in generating superior spatial resolution in neural interfaces. Two principal methods are explored for cochlear prostheses: direct stimulation of nerves with infrared light and optogenetics. This paper discusses basic requirements for developing a light delivery system (LDS) for the cochlea and provides examples for building such devices. The proposed device relies on small optical sources, which are assembled in an array to be inserted into the cochlea. The mechanical properties, the biocompatibility, and the efficacy of optrodes have been tested in animal models. The force required to insert optrodes into a model of the human scala tympani was comparable to insertion forces obtained for contemporary cochlear implant electrodes. Side-emitting diodes are powerful enough to evoke auditory responses in guinea pigs. Chronic implantation of the LDS did not elevate auditory brainstem responses over 26 weeks.

17.
J Tissue Eng Regen Med ; 12(6): 1389-1401, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701919

RESUMEN

Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.


Asunto(s)
Fenómenos Electrofisiológicos , Nervio Facial/fisiopatología , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Péptidos/farmacología , Tensoactivos/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Estimulación Eléctrica , Electromiografía , Nervio Facial/efectos de los fármacos , Nervio Facial/cirugía , Nervio Facial/ultraestructura , Femenino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/ultraestructura , Nanofibras/ultraestructura , Ratas Sprague-Dawley
18.
Sci Rep ; 8(1): 3033, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445111

RESUMEN

Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.


Asunto(s)
Cóclea/efectos de los fármacos , Fluvastatina/farmacología , Pérdida Auditiva Provocada por Ruido/prevención & control , Animales , Umbral Auditivo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Femenino , Fluvastatina/metabolismo , Cobayas , Células Ciliadas Auditivas Externas , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Ruido/efectos adversos , Órgano Espiral , Sustancias Protectoras/farmacología
19.
Sci Rep ; 8(1): 388, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321651

RESUMEN

To determine whether responses during infrared neural stimulation (INS) result from the direct interaction with spiral ganglion neurons (SGNs), we tested three genetically modified deaf mouse models: Atoh1-cre; Atoh1 f/f (Atoh1 conditional knockout, CKO), Atoh1-cre; Atoh1 f/kiNeurog1 (Neurog1 knockin, KI), and the Vglut3 knockout (Vglut3 -/-) mice. All animals were exposed to tone bursts and clicks up to 107 dB (re 20 µPa) and to INS, delivered with a 200 µm optical fiber. The wavelength (λ) was 1860 nm, the radiant energy (Q) 0-800 µJ/pulse, and the pulse width (PW) 100-500 µs. No auditory responses to acoustic stimuli could be evoked in any of these animals. INS could not evoke auditory brainstem responses in Atoh1 CKO mice but could in Neurog1 KI and Vglut3 -/- mice. X-ray micro-computed tomography of the cochleae showed that responses correlated with the presence of SGNs and hair cells. Results in Neurog1 KI mice do not support a mechanical stimulation through the vibration of the basilar membrane, but cannot rule out the direct activation of the inner hair cells. Results in Vglut3 -/- mice, which have no synaptic transmission between inner hair cells and SGNs, suggested that hair cells are not required.


Asunto(s)
Sordera/congénito , Sordera/terapia , Estimulación Encefálica Profunda/métodos , Células Ciliadas Auditivas/fisiología , Ganglio Espiral de la Cóclea/fisiología , Estimulación Acústica , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sordera/etiología , Sordera/genética , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Técnicas de Inactivación de Genes , Rayos Infrarrojos , Masculino , Ratones , Microtomografía por Rayos X
20.
IEEE Trans Biomed Eng ; 65(7): 1575-1584, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-27959792

RESUMEN

OBJECTIVE: The purpose of the study is to demonstrate laser-evoked pressure waves in small confined volumes such as the cochlea. METHODS: Custom-fabricated pressure probes were used to determine the pressure in front of the optical fiber in a small dish and patch pipettes to measure temperature changes. Pressure probes were inserted into scala tympani (ST) or vestibuli during laser stimulation. With a sensitive microphone the pressure was measured in the outer ear canal. RESULTS: Heating was spatially confined. The heat relaxation time was 35 ms. During laser stimulation in the cochlea at 17 µJ/pulse, the pressure in the outer ear canal (EC) was 43.5 dB (re 20 µPa). The corresponding intracochlear pressure was calculated to be about 78.5 dB (re 20 µPa) using the middle ear reverse transfer function of -35 dB. At 164 µJ/pulse, the pressure in the EC was on average 63 dB (re 20 µPa) and the intracochlear pressure was estimated to be 98 dB (re 20 µPa), which is similar to the value obtained with the pressure probe, 100 dB (re 20 µPa). Side-emitting optical fibers were used to steer the beam path. The pressure values were independent of the orientation of the beam path. Evoked compound action potentials of the auditory nerve were maximum when spiral ganglion neurons were in the beam path. CONCLUSION: Pressure waves are generated during infrared laser stimulation. The intracochlear pressure was independent from the orientation of the beam path. SIGNIFICANCE: Neural responses required the spiral ganglion neurons to be directly irradiated.


Asunto(s)
Cóclea/fisiología , Cóclea/efectos de la radiación , Rayos Infrarrojos , Presión , Animales , Cobayas , Rayos Láser , Estimulación Física , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...