Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(41): 93786-93799, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516704

RESUMEN

A simple mixing-pressing followed by thermal curing and pyrolysis process was used to upcycle coal waste into high-value composites. Three coal wastes of different physicochemical properties were investigated. The hypothetical mechanisms of bonding between the coal particles and the preceramic polymer are presented. The textural properties of the coals indicated that the lowest volatile coal waste (PCD) had a dense structure. This limited the diffusion and reaction of the preceramic polymer with the coal waste during pyrolysis, thereby leading to low-quality composites. The water contact angles of the composites up to 104° imply hydrophobic surfaces, hence, no external coating might be required. Analysis of the carbon phase confirmed that the amorphous carbon structure is prevalent in the composites compared to the coal wastes. The dc volume resistivity of the composites in the range of 22 to 82 Ω-cm infers that the composites are unlikely to suffer electrostatic discharge, which makes them useful in creating self-heating building parts. The leached concentrations of heavy metal elements from the composites based on the end-of-life scenario were below the Toxicity Characteristic Leaching Procedure regulatory limits. Additionally, the release potential or mobility of the metals from the composites was not influenced by the pH of the eluants used. On the basis of the reported results, these carbon/ceramic composites show tremendous prospects as building materials due to these properties.


Asunto(s)
Carbón Mineral , Metales Pesados , Carbón Mineral/análisis , Siloxanos/análisis , Polímeros , Pirólisis , Cerámica , Carbono , Propiedades de Superficie , Ceniza del Carbón/análisis
2.
J Hazard Mater ; 445: 130607, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056017

RESUMEN

Graphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to effectively regenerate aged (39.5 %, 75 % state-of-health, SOH) scrapped graphite (SG) from end-of-life lithium-ion batteries. Ultimately, the first cycle reversible capacity of SG1 (SOH = 39.5 %) improved from 266 mAh/g to 337 mAh/g while 330 mAh/g (98 %) remain after 100 cycles at 0.5 C. The reversible capacity for the first cycle of SG2 (SOH = 75 %) boosted from 335 mAh/g to 366 mAh/g with the capacity retention of 99.3 % after 100 cycles at 0.5 C, which is comparable with the benchmark commercial graphite. The regenerated graphites RG1 and RG2 exhibit excellent output characteristics even increasing the rate up to 4 C. This is the best rate level reported in the literature to date. Finally, the diffusion coefficient of Li ions during deintercalation and intercalation in the regenerated graphites have been measured by galvanostatic intermittent titration technique (GITT), determining values 2 orders-of-magnitude higher than that of the spent counterparts. Taking advantage of the synergistic effect of acid leaching and heat treatment, this strategy provides a simple and up-scalable method to recycle graphitic anodes.

3.
ChemSusChem ; 16(12): e202202241, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36892993

RESUMEN

Polymer-derived silicon oxycarbide ceramics (SiCO) have been considered as potential anode materials for lithium- and sodium-ion batteries. To understand their electrochemical storage behavior, detailed insights into structural sites present in SiCO are required. In this work, the study of local structures in SiCO ceramics containing different amounts of carbon is presented. 13 C and 29 Si solid-state MAS NMR spectroscopy combined with DFT calculations, atomistic modeling, and EPR investigations, suggest significant changes in the local structures of SiCO ceramics even by small changes in the material composition. The provided findings on SiCO structures will contribute to the research field of polymer-derived ceramics, especially to understand electrochemical storage processes of alkali metal/ions such as Na/Na+ inside such networks in the future.


Asunto(s)
Metales Alcalinos , Teoría Funcional de la Densidad , Cerámica , Iones , Polímeros , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...