Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 13(8): e1006538, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28787449

RESUMEN

Despite effective control of plasma viremia with the use of combination antiretroviral therapies (cART), minor cognitive and motor disorders (MCMD) persist as a significant clinical problem in HIV-infected patients. Non-human primate models are therefore required to study mechanisms of disease progression in the central nervous system (CNS). We isolated a strain of simian immunodeficiency virus (SIV), SIVsm804E, which induces neuroAIDS in a high proportion of rhesus macaques and identified enhanced antagonism of the host innate factor BST-2 as an important factor in the macrophage tropism and initial neuro-invasion of this isolate. In the present study, we further developed this model by deriving a molecular clone SIVsm804E-CL757 (CL757). This clone induced neurological disorders in high frequencies but without rapid disease progression and thus is more reflective of the tempo of neuroAIDS in HIV-infection. NeuroAIDS was also induced in macaques co-inoculated with CL757 and the parental AIDS-inducing, but non-neurovirulent SIVsmE543-3 (E543-3). Molecular analysis of macaques infected with CL757 revealed compartmentalization of virus populations between the CNS and the periphery. CL757 exclusively targeted the CNS whereas E543-3 was restricted to the periphery consistent with a role for viral determinants in the mechanisms of neuroinvasion. CL757 would be a useful model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS.


Asunto(s)
Complejo SIDA Demencia/virología , Modelos Animales de Enfermedad , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Encéfalo/virología , Citometría de Flujo , Macaca mulatta , Reacción en Cadena de la Polimerasa , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones
2.
J Virol ; 90(24): 11087-11095, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27681142

RESUMEN

TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE: Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.


Asunto(s)
Cápside/inmunología , Proteínas Portadoras/genética , Evasión Inmune , ARN Viral/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cápside/química , Proteínas Portadoras/inmunología , Cercocebus atys , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Mutación , ARN Viral/inmunología , Alineación de Secuencia , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/mortalidad , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Análisis de Supervivencia , Dedos de Zinc
3.
J Virol ; 90(5): 2316-31, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26656714

RESUMEN

UNLABELLED: African green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIV in vivo, while human-derived CXCR6 and GPR15 also appear to be used in vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptors in vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4(+) T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4(+) T cells and are potential alternative coreceptors for SIVagm use in vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals. IMPORTANCE: African green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cells in vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptors in vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entry in vitro and may serve as entry coreceptors for SIVagm in vivo, since their mRNAs were detected in AGM memory CD4(+) T cells, the preferred target cells of SIV.


Asunto(s)
Linfocitos/virología , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Internalización del Virus , Animales , Células Cultivadas , Chlorocebus aethiops , Replicación Viral
4.
J Virol ; 89(18): 9252-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109719

RESUMEN

UNLABELLED: Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. IMPORTANCE: Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Internalización del Virus , Animales , Linfocitos T CD4-Positivos/virología , Cercocebus atys , Células HEK293 , Humanos , Receptores CCR5/genética , Receptores CXCR/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Tropismo Viral/fisiología
5.
J Virol ; 89(4): 2233-40, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473059

RESUMEN

UNLABELLED: Tripartite motif-containing protein 5α (TRIM5α) is considered to be a potential target for cell-based gene modification therapy against human immunodeficiency virus type 1 (HIV-1) infection. In the present study, we used a relevant rhesus macaque model of infection with simian immunodeficiency virus from sooty mangabey (SIVsm) to evaluate the effect of TRIM5α restriction on clinical outcome. For macaques expressing a restrictive TRIM5 genotype, the disease outcomes of those infected with the wild-type TRIM-sensitive SIVsm strain and those infected with a virus with escape mutations in the capsid were compared. We found that TRIM5α restriction significantly delayed disease progression and improved the survival rate of SIV-infected macaques, supporting the feasibility of exploiting TRIM5α as a target for gene therapy against HIV-1. Furthermore, we also found that preservation of memory CD4 T cells was associated with protection by TRIM5α restriction, suggesting memory CD4 T cells or their progenitor cells as an ideal target for gene modification. Despite the significant effect of TRIM5α restriction on survival, SIV escape from TRIM5α restriction was also observed; therefore, this may not be an effective stand-alone strategy and may require combination with other targets. IMPORTANCE: Recent studies suggest that it may be feasible not only to suppress viral replication with antiviral drugs but also potentially to eliminate or "cure" human immunodeficiency virus (HIV) infection. One approach being explored is the use of gene therapy to introduce genes that can restrict HIV replication, including a restrictive version of the host factor TRIM5α. TRIM5 was identified as a factor that restricts HIV replication in macaque cells. The rhesus gene is polymorphic, and some alleles are restrictive for primary SIVsm isolates, although escape mutations arise late in infection. Introduction of these escape mutations into the parental virus conferred resistance to TRIM5 on macaques. The present study evaluated these animals for long-term outcomes and found that TRIM5α restriction significantly delayed disease progression and improved the survival rate of SIV-infected macaques, suggesting that this could be a valid gene therapy approach that could be adapted for HIV.


Asunto(s)
Proteínas/inmunología , Proteínas/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Progresión de la Enfermedad , Genotipo , Memoria Inmunológica , Macaca mulatta , Proteínas/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/mortalidad , Análisis de Supervivencia , Ubiquitina-Proteína Ligasas
6.
J Virol ; 88(22): 13201-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25187546

RESUMEN

UNLABELLED: Although nonhuman primate models of neuro-AIDS have made tremendous contributions to our understanding of disease progression in the central nervous system (CNS) of human immunodeficiency virus type 1 (HIV-1)-infected individuals, each model holds advantages and limitations. In this study, in vivo passage of SIVsmE543 was conducted to obtain a viral isolate that can induce neuropathology in rhesus macaques. After a series of four in vivo passages in rhesus macaques, we have successfully isolated SIVsm804E. SIVsm804E shows efficient replication in peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) in vitro and induces neuro-AIDS in high frequencies in vivo. Analysis of the acute phase of infection revealed that SIVsm804E establishes infection in the CNS during the early phase of the infection, which was not observed in the animals infected with the parental SIVsmE543-3. Comprehensive analysis of disease progression in the animals used in the study suggested that host major histocompatibility complex class I (MHC-I) and TRIM5α genotypes influence the disease progression in the CNS. Taken together, our findings show that we have successfully isolated a new strain of simian immunodeficiency virus (SIV) that is capable of establishing infection in the CNS at early stage of infection and causes neuropathology in infected rhesus macaques at a high frequency (83%) using a single inoculum, when animals with restrictive MHC-I or TRIM5α genotypes are excluded. SIVsm804E has the potential to augment some of the limitations of existing nonhuman primate neuro-AIDS models. IMPORTANCE: Human immunodeficiency virus (HIV) is associated with a high frequency of neurologic complications due to infection of the central nervous system (CNS). Although the use of antiviral treatment has reduced the incidence of severe complications, milder disease of the CNS continues to be a significant problem. Animal models to study development of neurologic disease are needed. This article describes the development of a novel virus isolate that induces neurologic disease in a high proportion of rhesus macaques infected without the need for prior immunomodulation as is required for some other models.


Asunto(s)
Encefalitis Viral/inmunología , Macaca mulatta , Complejo Mayor de Histocompatibilidad/inmunología , Proteínas/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Encéfalo/virología , Encefalitis Viral/genética , Genotipo , Lentivirus de los Primates , Complejo Mayor de Histocompatibilidad/genética , Datos de Secuencia Molecular , Proteínas/genética , Análisis de Secuencia de ADN , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Ubiquitina-Proteína Ligasas , Virulencia
7.
J Virol ; 86(2): 898-908, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22090107

RESUMEN

Natural host sooty mangabeys (SM) infected with simian immunodeficiency virus SIVsmm do not develop AIDS despite high viremia. SM and other natural hosts express very low levels of CCR5 on CD4(+) T cells, and we recently showed that SIVsmm infection and robust replication occur in vivo in SM genetically lacking CCR5, indicating the use of additional entry pathways. SIVsmm uses several alternative coreceptors of human origin in vitro, but which molecules of SM origin support entry is unknown. We cloned a panel of putative coreceptors from SM and tested their ability to mediate infection, in conjunction with smCD4, by pseudotypes carrying Envs from multiple SIVsmm subtypes. smCXCR6 supported efficient infection by all SIVsmm isolates with entry levels comparable to those for smCCR5, and smGPR15 enabled entry by all isolates at modest levels. smGPR1 and smAPJ supported low and variable entry, whereas smCCR2b, smCCR3, smCCR4, smCCR8, and smCXCR4 were not used by most isolates. In contrast, SIVsmm from rare infected SM with profound CD4(+) T cell loss, previously reported to have expanded use of human coreceptors, including CXCR4, used smCXCR4, smCXCR6, and smCCR5 efficiently and also exhibited robust entry through smCCR3, smCCR8, smGPR1, smGPR15, and smAPJ. Entry was similar with both known alleles of smCD4. These alternative coreceptors, particularly smCXCR6 and smGPR15, may support virus replication in SM that have restricted CCR5 expression as well as SM genetically lacking CCR5. Defining expression of these molecules on SM CD4(+) subsets may delineate distinct natural host target cell populations capable of supporting SIVsmm replication without CD4(+) T cell loss.


Asunto(s)
Cercocebus atys/genética , Clonación Molecular , Receptores CCR5/metabolismo , Receptores del VIH/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Internalización del Virus , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Cercocebus atys/metabolismo , Cercocebus atys/virología , Humanos , Datos de Secuencia Molecular , Receptores CCR5/química , Receptores CCR5/genética , Receptores del VIH/química , Receptores del VIH/metabolismo , Alineación de Secuencia , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Replicación Viral
8.
Nat Med ; 17(7): 830-6, 2011 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-21706028

RESUMEN

Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4(+)CCR5(+) T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4(+) T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4(+) central memory T cells (T(CM) cells). CD4(+) T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4(+) T cell depletion. Sooty mangabey CD4(+) T(CM) cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4(+) T(CM) cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4(+) T cells favors the preservation of CD4(+) T cell homeostasis and promotes an AIDS-free status by protecting CD4(+) T(CM) cells from direct virus infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Receptores CCR5/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Relación CD4-CD8 , Linfocitos T CD4-Positivos/química , Cercocebus atys/inmunología , Femenino , Activación de Linfocitos/inmunología , Macaca mulatta/inmunología , Masculino , Receptores CCR5/análisis , Receptores CCR5/metabolismo , Factores de Tiempo , Carga Viral/inmunología
9.
Blood ; 118(4): 1015-9, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21068438

RESUMEN

CC Chemokine Receptor 5 (CCR5) is an important mediator of chemotaxis and the primary coreceptor for HIV-1. A recent report by other researchers suggested that primary T cells harbor pools of intracellular CCR5. With the use of a series of complementary techniques to measure CCR5 expression (antibody labeling, Western blot, quantitative reverse transcription polymerase chain reaction), we established that intracellular pools of CCR5 do not exist and that the results obtained by the other researchers were false-positives that arose because of the generation of irrelevant binding sites for anti-CCR5 antibodies during fixation and permeabilization of cells.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Receptores CCR5/metabolismo , Western Blotting , Linfocitos T CD4-Positivos/química , Linfocitos T CD8-positivos/química , Separación Celular , Citoplasma/química , Citoplasma/metabolismo , Reacciones Falso Positivas , Citometría de Flujo , Humanos , Receptores CCR5/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fijación del Tejido
10.
PLoS Pathog ; 6(8): e1001064, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20865163

RESUMEN

In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.


Asunto(s)
Cercocebus atys/genética , Receptores CCR5/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Separación Celular , Citometría de Flujo , Genotipo , Humanos , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa , Receptores CCR5/biosíntesis , Transfección , Carga Viral/genética
11.
Circ Res ; 104(4): 531-40, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19131646

RESUMEN

Abnormal vascular smooth muscle cell (VSMC) contraction plays an important role in vascular diseases. The RhoA/ROCK signaling pathway is now well recognized to mediate vascular smooth muscle contraction in response to vasoconstrictors by inhibiting myosin phosphatase (MLCP) activity and increasing myosin light chain phosphorylation. Two ROCK isoforms, ROCK1 and ROCK2, are expressed in many tissues, yet the isoform-specific roles of ROCK1 and ROCK2 in vascular smooth muscle and the mechanism of ROCK-mediated regulation of MLCP are not well understood. In this study, ROCK2, but not ROCK1, bound directly to the myosin binding subunit of MLCP, yet both ROCK isoforms regulated MLCP and myosin light chain phosphorylation. Despite that both ROCK1 and ROCK2 regulated MLCP, the ROCK isoforms had distinct and opposing effects on VSMC morphology and ROCK2, but not ROCK1, had a predominant role in VSMC contractility. These data support that although the ROCK isoforms both regulate MLCP and myosin light chain phosphorylation through different mechanisms, they have distinct roles in VSMC function.


Asunto(s)
Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Vasoconstricción , Quinasas Asociadas a rho/metabolismo , Animales , Sitios de Unión , Línea Celular , Forma de la Célula , Células Cultivadas , Humanos , Isoenzimas , Lisofosfolípidos/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección , Quinasas Asociadas a rho/genética
12.
J Cell Biochem ; 103(4): 1158-70, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17661354

RESUMEN

Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber.


Asunto(s)
Proteínas de Microfilamentos/fisiología , Contracción Muscular/fisiología , Miocitos del Músculo Liso/fisiología , Fosfatasa de Miosina de Cadena Ligera/fisiología , Quinasas Asociadas a rho/fisiología , Proteína de Unión al GTP rhoA/fisiología , Animales , Línea Celular , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocitos del Músculo Liso/enzimología , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Unión Proteica , Ratas , Fibras de Estrés/fisiología
13.
J Biol Chem ; 280(52): 42543-51, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16257966

RESUMEN

Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.


Asunto(s)
Actinas/química , Proteínas Adaptadoras Transductoras de Señales/fisiología , Músculo Liso Vascular/citología , Cadenas Ligeras de Miosina/química , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aorta/patología , Línea Celular , Células Cultivadas , Endotelio Vascular/patología , Inhibidores Enzimáticos/farmacología , Silenciador del Gen , Humanos , Microscopía Fluorescente , Modelos Genéticos , Contracción Muscular , Miocitos del Músculo Liso/citología , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fenotipo , Fosforilación , Unión Proteica , Interferencia de ARN , Transfección , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...