Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 183(1-4): 307-28, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21404015

RESUMEN

The tidal Anacostia River in Washington DC has long been impacted by various sources of chemical pollution over the past 200 years. To explore more recent inputs of various chemicals, six sediment cores were collected for dating and chemical analysis in the downstream section of the tidal Anacostia River. Profiles of contaminants in sediment cores can be useful in determining management direction and effectiveness of pollution controls over time. There were two main objectives for this investigation: (1) determine current sediment contaminant levels; (2) determine a historical perspective of the sediment changes in contamination using (137)Cs and (210)Pb dating. The determination of an age-depth relationship using (210)Pb and (137)Cs dating gave somewhat different results, suggesting that the assumptions of (210)Pb dating were not met. Using the (137)Cs horizon allowed an assignment of approximate sediment accumulation rates and hence an age-depth relationship to contaminant events in the upper portions of the cores. Total PAHs showed higher concentrations at depth and lower surface concentrations. In the upper sections, PAHs were a mixture of combustion and petrogenic sources, while at depth the signature appeared to be of natural origins. Total PCBs, DDTs and chlordane concentrations showed a maximum in recent sediments, decreasing towards the surface. PCBs had lower molecular weight congeners near the surface and higher molecular weights at depth. A phthalate ester, DEHP, appeared in the mid 1940-1950s, and decreased towards the surface. Trace elements fell roughly into three groups. Fe, Mn, and As were in approximately constant proportion to Al, except in some deeper, sandy sediments, where they showed enrichments linked to redox conditions. Ag, Cd, Cu, Hg, Pb, and Zn had low concentrations in the deepest sediments, high concentrations at mid-depths, and declines to intermediate levels at the surface. Ni and Cr followed neither of these patterns closely. We observed that many contaminants appeared in the Anacostia sediments at various times, and reached relatively high concentrations in the past, but are now showing declines in loadings. In some cases, such as PCBs, DDT, chlordane, and Pb from leaded gasoline, these declines can be clearly linked to the discontinuation of their use for environmental reasons. For other contaminants (e.g., PAHs, DEHP, selected metals) these declines are more likely the result of changes in production, usage and waste control.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Clordano/análisis , DDT/análisis , District of Columbia , Plomo/análisis , Bifenilos Policlorados/análisis , Ríos
2.
PLoS One ; 6(3): e18026, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21437262

RESUMEN

BACKGROUND: The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources. METHODOLOGY/PRINCIPAL FINDINGS: To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect. CONCLUSIONS/SIGNIFICANCE: Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship.


Asunto(s)
Biodiversidad , Incrustaciones Biológicas , Cobre/toxicidad , Clima Tropical , Animales , Contaminación Ambiental , Humanos , Invertebrados/efectos de los fármacos , Análisis Multivariante , Panamá , Virginia
3.
PLoS One ; 4(5): e5661, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19478855

RESUMEN

BACKGROUND: Human activities have increased atmospheric concentrations of carbon dioxide by 36% during the past 200 years. One third of all anthropogenic CO(2) has been absorbed by the oceans, reducing pH by about 0.1 of a unit and significantly altering their carbonate chemistry. There is widespread concern that these changes are altering marine habitats severely, but little or no attention has been given to the biota of estuarine and coastal settings, ecosystems that are less pH buffered because of naturally reduced alkalinity. METHODOLOGY/PRINCIPAL FINDINGS: To address CO(2)-induced changes to estuarine calcification, veliger larvae of two oyster species, the Eastern oyster (Crassostrea virginica), and the Suminoe oyster (Crassostrea ariakensis) were grown in estuarine water under four pCO(2) regimes, 280, 380, 560 and 800 microatm, to simulate atmospheric conditions in the pre-industrial era, present, and projected future concentrations in 50 and 100 years respectively. CO(2) manipulations were made using an automated negative feedback control system that allowed continuous and precise control over the pCO(2) in experimental aquaria. Larval growth was measured using image analysis, and calcification was measured by chemical analysis of calcium in their shells. C. virginica experienced a 16% decrease in shell area and a 42% reduction in calcium content when pre-industrial and end of 21(st) century pCO(2) treatments were compared. C. ariakensis showed no change to either growth or calcification. Both species demonstrated net calcification and growth, even when aragonite was undersaturated, a result that runs counter to previous expectations for invertebrate larvae that produce aragonite shells. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that temperate estuarine and coastal ecosystems are vulnerable to the expected changes in water chemistry due to elevated atmospheric CO(2) and that biological responses to acidification, especially calcifying biota, will be species-specific and therefore much more variable and complex than reported previously.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Carbonato de Calcio/metabolismo , Dióxido de Carbono/farmacología , Crassostrea/efectos de los fármacos , Crassostrea/crecimiento & desarrollo , Agua Dulce , Ácidos , Estructuras Animales/anatomía & histología , Estructuras Animales/efectos de los fármacos , Animales , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Tamaño de los Órganos/efectos de los fármacos
4.
Mar Pollut Bull ; 58(7): 1016-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19342067

RESUMEN

Cadmium (Cd) concentrations in the coastal United States were assessed using the National Status and Trends (NS&T) Mussel Watch dataset, which is based on the analysis of sediments and bivalves collected from 280 sites since 1986. Using the 1997 sediment data, Pearson correlation (r=0.44, p<0.0001) suggested that Cd distributions in sediment can, be to some extent, explained by the proximity of sites to population centers. The 2003 tissue data indicated that "high" Cd concentrations (greater than 5.6 microg/g dry weights [dw] for mussel and 5.4 microg/g dw for oysters) were related to salinity along the East and Gulf coasts. Along the West coast, however, these "high" sites appeared to be related to upwelling phenomenon. Additionally, sedimentary diagenesis was found to be the most likely explanation of why sediment and mollusk Cd content were not well correlated.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Moluscos/química , Contaminantes Químicos del Agua/análisis , Animales , Salinidad , Agua de Mar/química , Estados Unidos
5.
Environ Sci Technol ; 42(13): 4804-10, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18678009

RESUMEN

A water quality model was developed to track the fate and transport of four arsenic species in the Patuxent Estuary: arsenate (As(V)), arsenite (As(III)), methylarsonate (MMA), and dimethylarsinate (DMA). Processes simulated include mass transport, solid-liquid partitioning with suspended solids, uptake and transformation of As(V) by phytoplankton, oxidation of As(III), demethylation of MMA and DMA, and settling/deposition/ resuspension of particulate arsenic in the water column. A sediment module was also developed and linked with the water column to generate fluxes of inorganic arsenic from the sediment bed. The arsenic model was calibrated using water quality data from the Patuxent Estuary over a period ranging from May 24, 1995 to October 29, 1997. Model results indicated that transformation of arsenic by phytoplankton is not a significant source of DMA to the lower Patuxent. Instead, results suggested that the primary source of methylated arsenic (DMA and MMA) to the lower estuary is beyond the downstream boundary (Chesapeake Bay). However, model results supported the hypothesis that flux of arsenic from the sediment is a significant source of inorganic arsenic to the lower estuary.


Asunto(s)
Arsenicales/análisis , Modelos Químicos , Ríos/química , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , Cinética , Maryland , Temperatura
6.
Chemosphere ; 49(1): 27-37, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12243327

RESUMEN

The potential sources of relatively great concentrations of arsenic (As) in oysters from the Southeastern United States coast was examined in a study conducted from August 1998 through October 1999. A transplant experiment was conducted to determine whether genetic or environmental differences accounted for the observed difference between Southeastern oysters, and oysters elsewhere on the east coast. Oysters originating in South Carolina (a region where As in oysters is usually greater) and Maryland (a region where arsenic is oysters is less) were reciprocally transplanted to determine whether site of growth or site of origin would determine the accumulation of As. To examine the potential role of various potential sources of As exposure on the concentrations of As in oysters, samples of native oysters, water, pore water and suspended particles were collected and analyzed for As monthly, while the sediments were examined four times during the year. Concentrations of As in transplanted oysters matched the concentrations of As in oysters native to the area in which they were grown, rather than that of oysters from their site of origin. Oysters from South Carolina had average concentrations of As approximately 3.2 times that of oysters from Maryland. This enrichment was similar to enrichments of water (3.4 times), sediment (2.5 times), suspended particles (1.7 times), and pore water (3.1 times) from South Carolina compared to Maryland. This supports the hypothesis that the cause of the apparent As enrichments in the Southeastern oysters is environmental, but leaves the question of the primary source for arsenic incorporation by oysters open.


Asunto(s)
Arsénico/metabolismo , Ostreidae/genética , Ostreidae/metabolismo , Animales , Arsénico/análisis , Ambiente , Variación Genética , Sedimentos Geológicos , Sudeste de Estados Unidos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA