Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Microb Biotechnol ; 17(6): e14488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850269

RESUMEN

The transition towards a sustainable bioeconomy requires the development of highly efficient bioprocesses that enable the production of bulk materials at a competitive price. This is particularly crucial for driving the commercialization of polyhydroxyalkanoates (PHAs) as biobased and biodegradable plastic substitutes. Among these, the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) shows excellent material properties that can be tuned by regulating its monomer composition. In this study, we developed a high-cell-density fed-batch strategy using mixtures of fructose and canola oil to modulate the molar composition of P(HB-co-HHx) produced by Ralstonia eutropha Re2058/pCB113 at 1-L laboratory scale up to 150-L pilot scale. With cell densities >100 g L-1 containing 70-80 wt% of PHA with tunable HHx contents in the range of 9.0-14.6 mol% and productivities of up to 1.5 g L-1 h-1, we demonstrate the tailor-made production of P(HB-co-HHx) at an industrially relevant scale. Ultimately, this strategy enables the production of PHA bioplastics with defined material properties on the kilogram scale, which is often required for testing and adapting manufacturing processes to target diverse applications.


Asunto(s)
Cupriavidus necator , Fructosa , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Fructosa/metabolismo , Ingeniería Metabólica/métodos , Caproatos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Aceite de Brassica napus/metabolismo , Aceite de Brassica napus/química , Recuento de Células , Polihidroxibutiratos
2.
Chem Sci ; 15(21): 8045-8051, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817554

RESUMEN

Free phosphaborenes have a labile boron-phosphorus double bond and therefore require extensive steric shielding by bulky substituents to prevent isomerisation and oligomerisation. In the present work, the small free phosphaborene F2B-P[double bond, length as m-dash]BF was isolated by matrix-isolation techniques and was characterised by infrared spectroscopy in conjunction with quantum-chemical methods. In contrast to its sterically hindered relatives, this small phosphaborene exhibits an acute BPB angle of 83° at the CCSD(T) level. An alternative orbital structure for the B[double bond, length as m-dash]P double bond is found in the triradical B[double bond, length as m-dash]PF3, the direct adduct of laser-ablated atomic B and PF3. The single-bonded isomer F2B-PF and the dimer F3P-B[triple bond, length as m-dash]B-PF3 are also tentatively assigned.

3.
Chem Sci ; 15(21): 8038-8044, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817578

RESUMEN

Common Lewis superacids often suffer from low thermal stability or complicated synthetic protocols, requiring multi-step procedures and expensive starting materials. This prevents their large-scale application. Herein, the easy and comparably cheap synthesis of high-purity aluminium tris(fluorosulfate) ([Al(SO3F)3]x, AFS) is presented. All starting materials are commercially available and no work-up is required. The superacidity of this thermally stable, polymeric Lewis acid is demonstrated using both theoretical and experimental methods. Furthermore, its synthetic and catalytic applicability, e.g. in bond heterolysis reactions and C-F bond activations, is shown.

4.
Nat Commun ; 15(1): 3848, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719794

RESUMEN

Fixation and functionalisation of N2 by main-group elements has remained scarce. Herein, we report a fixation and cleavage of the N ≡ N triple bond achieved in a dinitrogen (N2) matrix by the reaction of hydrogen and laser-ablated silicon atoms. The four-membered heterocycle H2Si(µ-N)2SiH2, the H2SiNN(H2) and HNSiNH complexes are characterized by infrared spectroscopy in conjunction with quantum-chemical calculations. The synergistic interaction of the two SiH2 moieties with N2 results in the formation of final product H2Si(µ-N)2SiH2, and theoretical calculations reveal the donation of electron density of Si to π* antibonding orbitals and the removal of electron density from the π bonding orbitals of N2, leading to cleave the non-polar and strong NN triple bond.

6.
Chemistry ; : e202401015, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618887

RESUMEN

The molecular IrF5 -, IrF6 - anions and M[IrF6] (M=Na, K, Rb, Cs) ion pairs were prepared by co-deposition of laser-ablated alkali metal fluorides MF with IrF6 and isolated in solid neon or argon matrices under cryogenic conditions. The free anions were obtained as well by co-deposition of IrF6 with laser-ablated metals (Ir or Pt) as electron sources. The products were characterized in a combined analysis of matrix IR spectroscopy and electronic structure calculations using two-component quasi-relativistic DFT methods accounting for spin-orbit coupling (SOC) effects as well as multi-reference configuration-interaction (MRCI) approaches with SOC. Inclusion of SOC is crucial in the prediction of spectra and properties of IrF6 - and its alkali-metal ion pairs. The observed IR bands and the computations show that the IrF6 - anion adopts an Oh structure in a nondegenerate ground state stabilized by SOC effects, and not a distorted D4h structure in a triplet ground state as suggested by scalar-relativistic calculations. The corresponding "closed-shell" M[IrF6] ion pairs with C3v symmetry are stabilized by coordination of an alkali metal ion to three F atoms, and their structural change in the series from M=Na to Cs was proven spectroscopically. There is no evidence for the formation of IrF7, IrF7 - or M[IrF7] (M=Na, K, Rb, Cs) ion pairs in our experiments.

7.
Chemistry ; : e202401348, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619099

RESUMEN

The trifluorosilylarsinidene F3SiAs in the triplet ground state has been generated through the reaction of laser-ablated silicon atoms with AsF3 in cryogenic Ne- and Ar-matrices. The reactions proceed with the initial formation of perfluorinated arsasilene FAsSiF2 in the singlet ground state by two As-F bonds insertion reaction on annealing. The trifluorosilylarsinidene F3SiAs was formed via F-migration reactions of FAsSiF2 under irradiation at UV light (λ = 275 nm). The characterization of FAsSiF2 and F3SiAs by IR matrix-isolation spectroscopy is supported by computations at CCSD(T)-F12/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels of theory.

8.
Chemistry ; : e202401231, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625061

RESUMEN

Lewis acidic boron compounds are ubiquitous in chemistry due to their numerous applications, yet tuning and optimizing their properties towards different purposes is still a challenging field of research. In this work, the boron-based Lewis acid B[OTeF3(C6F5)2]3 was synthesized by reaction of the teflate derivative HOTeF3(C6F5)2 with BCl3 or BCl3 ⋅ SMe2. This new compound presents a remarkably high thermal stability up to 300 °C, as well as one of the most sterically encumbered boron centres known in the literature. Theoretical and experimental methods revealed that B[OTeF3(C6F5)2]3 exhibits a comparable Lewis acidity to that of the well-known B(C6F5)3. The affinity of B[OTeF3(C6F5)2]3 towards pyridine was accessed by Isothermal Titration Calorimetry (ITC) and compared to that of B(OTeF5)3 and B(C6F5)3. The ligand-transfer reactivity of this new boron compound towards different fluorides was demonstrated by the formation of an anionic Au(III) complex and a hypervalent iodine(III) species.

9.
Inorg Chem ; 63(16): 7286-7292, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38592208

RESUMEN

The perfluorinated silylphosphinidene, F3SiP, in the triplet ground state is generated by the reaction of laser-ablated silicon atoms with PF3 in solid neon and argon matrices. The reactions proceed with the initial formation of a silicon trifluorophosphine complex, F3PSi, in the triplet ground state, and a more stable inserted phosphasilene, FPSiF2, in the singlet ground state upon deposition. The trifluorosilylphosphinidene was formed through F-migration reactions of FPSiF2 and F3PSi following a two-state mechanism under irradiation with visible light (λ = 470 nm) and full arc light (λ > 220 nm), respectively. High-level quantum-chemical methods support the identification of F3PSi, FPSiF2, and F3SiP by matrix-isolation IR spectroscopy.

10.
Chem Sci ; 15(15): 5564-5572, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638238

RESUMEN

Compounds containing Mn-O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2-, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2-, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2- (n = 4, 5) species (X = OTeF5, F), the Mn-X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species.

11.
Sci Adv ; 10(14): eadn5353, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569024

RESUMEN

Hydrogen chloride is produced as a by-product in industrial processes on a million-ton scale. Since HCl is inherently dangerous, its storage and transport are avoided by, e.g., on-site electrolysis providing H2 and Cl2 which usually requires complex cell designs and PFAS-based membranes. Here we report a complementary approach to safely store 0.61 kilogram HCl per kilogram storage material [NEt3Me]Cl forming the bichloride [NEt3Me][Cl(HCl)n]. Although HCl release is possible from this ionic liquid by heat or vacuum, the bichloride can be used directly to produce base chemicals like vinyl chloride. Alternatively, [NEt3Me][Cl(HCl)n] is electrolyzed under anhydrous conditions using a membrane-free cell to generate H2 and the corresponding chlorination agent [NEt3Me][Cl(Cl2)n], enabling the combination of these ionic liquids for the production of base chemicals.

12.
Chemistry ; 30(33): e202400861, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607245

RESUMEN

Herein we report a general access to silver(i) perfluoroalcoholates, their structure in the solid state and in solution, and their use as transfer reagents. The silver(i) perfluoroalcoholates are prepared by the reaction of AgF with the corresponding perfluorinated carbonyl compounds in acetonitrile and are stable for a prolonged time at -18 °C. X-ray analysis of single crystals of perfluoroalcoholate species showed that two Ag(i) centers are bridged by the alcoholate ligands. In acetonitrile solution, Ag[OCF3] forms different structures as indicated by IR spectroscopy. Furthermore, the silver(i) perfluoroalcoholates can be used as easy-to-handle transfer reagents for the synthesis of Cu[OCF3], Cu[OC2F5], [PPh4][Au(CF3)3(OCF3)], and fluorinated alkyl ethers.

13.
Chemistry ; 30(31): e202400585, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545825

RESUMEN

We report on an unexpected reaction between ammonia and potassium ozonide dissolved in liq. NH3 resulting in the formation of peroxynitrite, [ONOO]-, which exclusively happens in the presence of a specific partially fluorinated aniline-based ammonium cation. High-resolution structural data of the peroxynitrite anion in cis-conformation have been obtained. We further studied this molecule anion by single crystal Raman spectroscopy. The cis and trans isomers of peroxynitrite were analysed computationally with respect to their relative energies, the cis-trans transition barrier and their decomposition pathways to the nitrate anion. By experimentally examining cations decorated with fluorine ligands to different degrees, we demonstrate that fluorine specific interactions play a crucial role in the unexpected formation of peroxynitrite and as a conspicuously structure directing factor for the underlying crystalline solid phases, exhibiting distinct micro-separations of fluorine and hydrogen enriched regions.

14.
Chem Sci ; 15(12): 4504-4509, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516076

RESUMEN

The Simons process is an electrochemical fluorination method to prepare organofluorine compounds. Despite the wide application, the underlying mechanism is still unclear. We report the investigation of the black film formed on the surface of the anodes in aHF by an in situ Ni K-edge X-ray absorption near edge structure (XANES) investigation. An electrochemical cell for in situ X-ray absorption spectroscopy (XAS) is presented.

15.
Chemistry ; 30(21): e202400258, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38329888

RESUMEN

In this work, we analyzed trifluoromethyl fluorosulfonate (CF3OSO2F) and trifluoromethoxy sulfur pentafluoride (CF3OSF5) regarding their potential use as dielectrics by investigating some of their intrinsic and extrinsic properties. Both compounds show a higher breakdown voltage than SF6 with averaged relative breakdown voltages of 1.3±0.2 for CF3OSO2F and 1.4±0.2 for CF3OSF5 compared to SF6 with 1.0. Like the dielectric (CF3)2CFCN, both compounds decompose during the breakdown process. The decomposition products were analyzed by IR spectroscopy and GCIR methods. Furthermore, the molecular structures of both gaseous compounds CF3OSO2F and CF3OSF5 have been determined by in situ crystallization, and their physical properties were determined as well.

16.
Int J Biol Macromol ; 263(Pt 1): 130188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373562

RESUMEN

Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nano-plastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 - 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 °C to 126 °C, Tg 4 °C to -5.9 °C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h.


Asunto(s)
Caproatos , Polihidroxialcanoatos , Ácido 3-Hidroxibutírico/metabolismo , Hidroxibutiratos , Biotecnología
17.
Chemistry ; 30(15): e202303874, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38193267

RESUMEN

The reaction of laser-ablated boron atoms with hexafluorobenzene (C6 F6 ) was investigated in neon and argon matrices, and the products are identified by matrix isolation infrared spectroscopy and quantum-chemical calculations. The reaction is triggered by a boron atom insertion into one C-F bond of hexafluorobenzene on annealing, forming a fluoropentafluorophenyl boryl radical (A). UV-Vis light irradiation of fluoropentafluorophenyl boryl radical causes generation of a 2-difluoroboryl-tetrafluorophenyl radical (B) via a second C-F bond activation. A perfluoroborepinyl radical (C) is also observed upon deposition and under UV-Vis light irradiation. This finding reveals the new example of a dual C-F bond activation of hexafluorobenzene mediated by a nonmetal and provides a possible route for synthesis of new perfluorinated organo-boron compounds.

18.
Chem Commun (Camb) ; 60(13): 1711-1714, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38126165

RESUMEN

Herein we report on the formation of the adduct salts [Xe(OTeF5)(pyF)][Al(OTeF5)4] (pyF = C5F5N, C5H3F2N) by abstraction of an -OTeF5 group from Xe(OTeF5)2 with the Lewis superacid Al(OTeF5)3 and subsequent adduct formation of the generated [XeOTeF5]+ cation with fluorinated pyridines. These salts represent the first xenonium cations with the weakly coordinating [Al(OTeF5)4]- anion. The strong oxidizing property of these compounds is further assessed.

19.
Angew Chem Int Ed Engl ; 63(7): e202317770, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38131450

RESUMEN

Radical trifluoromethoxylation is an attractive approach to prepare compounds featuring the important OCF3 group, however most existing methods have focused on aromatic substrates. Here, we report novel methodologies with alkenyl substrates employing bis(trifluoromethyl)peroxide (BTMP) as a practical and comparatively atom economical trifluoromethoxylating reagent. With silyl enol ether substrates, switching reaction solvent allows for the synthesis of either α-(trifluoromethoxy)ketone products or unprecedented alkenyl-OCF3 species. Furthermore, allyl silanes have been employed as substrates for the first time, affording allyl(trifluoromethyl)ether products in good yields. In each case, the methods operate at room temperature without large excesses of the alkene substrate while, in contrast to previous radical trifluoromethoxylation reactions, no catalyst, light or other activators are required.

20.
Chem Sci ; 14(32): 8592-8597, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37593001

RESUMEN

The group 10 transition metal atoms Pd and Pt react with nitrogen trifluoride (NF3) forming N-coordination M(NF3) complexes in solid neon and argon matrices. The M(NF3) complexes isomerize to more stable fluoronitrenoid FNMF2 isomers via fluorine migration upon blue LED (λ = 470 nm) light irradiation. These products are characterized on the basis of infrared absorption spectroscopy with isotopic substitutions and theoretical frequency calculations. The analysis of the electronic structure of nitrogen trifluoride complexes indicates that the bonding between metal and nitrogen trifluoride can be described as σ donation from the HOMO of nitrogen trifluoride to the empty metal dz2 orbital and π back-donation from the metal dxz/yz orbitals to the LUMO of nitrogen trifluoride, the latter of which stabilized the metal ligand bond and destabilized the ligand N-F bond. In FNMF2, the FN ligand doubly bonded to the metal and bear imido character.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...