Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 188: 106339, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37913832

RESUMEN

Peripheral contact to pathogen-associated molecular patterns (PAMPs) evokes a systemic innate immune response which is rapidly relayed to the central nervous system (CNS). The remarkable cellular heterogeneity of the CNS poses a significant challenge to the study of cell type and stimulus dependent responses of neural cells during acute inflammation. Here we utilized single nuclei RNA sequencing (snRNAseq), serum proteome profiling and primary cell culture methods to systematically compare the acute response of the mammalian brain to the bacterial PAMP lipopolysaccharide (LPS) and the viral PAMP polyinosinic:polycytidylic acid (Poly(I:C)), at single cell resolution. Our study unveiled convergent transcriptional cytokine and cellular stress responses in brain vascular and ependymal cells and a downregulation of several key mediators of directed blood brain barrier (BBB) transport. In contrast the neuronal response to PAMPs was limited in acute neuroinflammation. Moreover, our study highlighted the dominant role of IFN signalling upon Poly(I:C) challenge, particularly in cells of the oligodendrocyte lineage. Collectively our study unveils heterogeneous, shared and distinct cell type and stimulus dependent acute responses of the CNS to bacterial and viral PAMP challenges. Our findings highlight inflammation induced dysregulations of BBB-transporter gene expression, suggesting potential translational implications on drug pharmacokinetics variability during acute neuroinflammation. The pronounced dependency of oligodendrocytes on IFN stimulation during viral PAMP challenges, emphasizes their limited molecular viral response repertoire.


Asunto(s)
Lipopolisacáridos , Enfermedades Neuroinflamatorias , Animales , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Sistema Nervioso Central , Inflamación , Mamíferos
2.
Acta Neuropathol ; 146(5): 707-724, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715818

RESUMEN

In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Hierro/metabolismo , Haptoglobinas/genética , Haptoglobinas/metabolismo , Biomarcadores , Hemoglobinas/metabolismo , Células Mieloides/patología , Imagen por Resonancia Magnética
3.
bioRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234821

RESUMEN

Reactive neuroglia critically shape the brains response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...