Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(22): 6922-6932, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37431145

RESUMEN

Most plant growth and development processes are regulated in one way or another by auxin. The best-studied mechanism by which auxin exerts its regulatory effects is through the nuclear auxin pathway (NAP). In this pathway, Auxin Response Factors (ARFs) are the transcription factors that ultimately determine which genes become auxin regulated by binding to specific DNA sequences. ARFs have primarily been studied in Arabidopsis thaliana, but recent studies in other species have revealed family-wide DNA binding specificities for different ARFs and the minimal functional system of the NAP system, consisting of a duo of competing ARFs of the A and B classes. In this review, we provide an overview of key aspects of ARF DNA binding such as auxin response elements (TGTCNN) and tandem repeat motifs, and consider how structural biology and in vitro studies help us understand ARF DNA preferences. We also highlight some recent aspects related to the regulation of ARF levels inside a cell, which may alter the DNA binding profile of ARFs in different tissues. We finally emphasize the need to study minimal NAP systems to understand fundamental aspects of ARF function, the need to characterize algal ARFs to understand how ARFs evolved, how cutting-edge techniques can increase our understanding of ARFs, and which remaining questions can only be answered by structural biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Theor Appl Genet ; 136(2): 28, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810666

RESUMEN

Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.


Asunto(s)
Solanum lycopersicum , Fitomejoramiento , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Semillas/genética , Plantones/genética
4.
Plant Cell Environ ; 43(8): 1973-1988, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32419153

RESUMEN

Seed quality and seedling establishment are the most important factors affecting successful crop development. They depend on the genetic background and are acquired during seed maturation and therefor, affected by the maternal environment under which the seeds develop. There is little knowledge about the genetic and environmental factors that affect seed quality and seedling establishment. The aim of this study is to identify the loci and possible molecular mechanisms involved in acquisition of seed quality and how these are controlled by adverse maternal conditions. For this, we used a tomato recombinant inbred line (RIL) population consisting of 100 lines which were grown under two different nutritional environmental conditions, high phosphate and low nitrate. Most of the seed germination traits such as maximum germination percentage (Gmax ), germination rate (t50 ) and uniformity (U8416 ) showed ample variation between genotypes and under different germination conditions. This phenotypic variation leads to identification of quantitative trait loci (QTLs) which were dependent on genetic factors, but also on the interaction with the maternal environment (QTL × E). Further studies of these QTLs may ultimately help to predict the effect of different maternal environmental conditions on seed quality and seedling establishment which will be very useful to improve the production of high-performance seeds.


Asunto(s)
Sitios de Carácter Cuantitativo , Plantones/genética , Semillas/genética , Solanum lycopersicum/genética , Interacción Gen-Ambiente , Genotipo , Germinación/genética , Solanum lycopersicum/fisiología , Nitratos/metabolismo , Fosfatos/metabolismo
5.
Trends Plant Sci ; 25(7): 624-627, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402659

RESUMEN

Did you know that a group of early-career researchers launched an initiative enabling open dialog on new plant breeding techniques, such as genome editing? We developed a wide-ranging initiative that aims to facilitate public engagement and provide a platform for young plant scientists to encourage participation in science communication.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Edición Génica , Fitomejoramiento , Plantas/genética
6.
Front Plant Sci ; 10: 1272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681372

RESUMEN

Late embryogenesis abundant (LEA) proteins are essential to the ability of resurrection plants and orthodox seeds to protect the subcellular milieu against irreversible damage associated with desiccation. In this work, we investigated the structure and function of six LEA proteins expressed during desiccation in the monocot resurrection species Xerophyta schlechteri (XsLEAs). In silico analyses suggested that XsLEAs are hydrophilic proteins with variable intrinsically disordered protein (IDP) properties. Circular dichroism (CD) analysis indicated that these proteins are mostly unstructured in water but acquire secondary structure in hydrophobic solution, suggesting that structural dynamics may play a role in their function in the subcellular environment. The protective property of XsLEAs was demonstrated by their ability to preserve the activity of the enzyme lactate dehydrogenase (LDH) against desiccation, heat and oxidative stress, as well as growth of Escherichia coli upon exposure to osmotic and salt stress. Subcellular localization analysis indicated that XsLEA recombinant proteins are differentially distributed in the cytoplasm, membranes and nucleus of Nicotiana benthamiana leaves. Interestingly, a LEA_1 family protein (XsLEA1-8), showing the highest disorder-to-order propensity and protective ability in vitro and in vivo, was also able to enhance salt and drought stress tolerance in Arabidopsis thaliana. Together, our results suggest that the structural plasticity of XsLEAs is essential for their protective activity to avoid damage of various subcellular components caused by water deficit stress. XsLEA1-8 constitutes a potential model protein for engineering structural stability in vitro and improvement of water-deficit stress tolerance in plants.

7.
Physiol Plant ; 167(2): 250-263, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30478903

RESUMEN

In the obligate short-day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24-h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Solanum tuberosum/genética , Factores de Transcripción/metabolismo , Luz , Modelos Biológicos , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/fisiología , Tubérculos de la Planta/efectos de la radiación , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Solanum tuberosum/efectos de la radiación , Factores de Transcripción/genética , Regulación hacia Arriba
8.
J Exp Bot ; 69(9): 2415-2430, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29415281

RESUMEN

Sorghum is an important food, feed, and industrial crop worldwide. Parasitic weeds of the genus Striga constitute a major constraint to sorghum production, particularly in the drier parts of the world. In this study we analysed the Striga germination stimulants, strigolactones, in the root exudates of 36 sorghum genotypes and assessed Striga germination and infection. Low germination-stimulating activity and low Striga infection correlated with the exudation of low amounts of 5-deoxystrigol and high amounts of orobanchol, whereas susceptibility to Striga and high germination-stimulating activity correlated with high concentrations of 5-deoxystrigol and low concentrations of orobanchol. Marker analysis suggested that similar genetics to those previously described for the resistant sorghum variety SRN39 and the susceptible variety Shanqui Red underlie these differences. This study shows that the strigolactone profile in the root exudate of sorghum has a large impact on the level of Striga infection. High concentrations of 5-deoxystrigol result in high infection, while high concentrations of orobanchol result in low infection. This knowledge should help to optimize the use of low germination stimulant-based resistance to Striga by the selection of sorghum genotypes with strigolactone profiles that favour normal growth and development, but reduce the risk of Striga infection.


Asunto(s)
Antibiosis/genética , Variación Genética , Lactonas , Malezas/fisiología , Sorghum/fisiología , Striga/fisiología , Lactonas/metabolismo , Sorghum/genética
9.
PLoS One ; 10(11): e0143212, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26588092

RESUMEN

Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA) mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA) position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature.


Asunto(s)
Antocianinas/metabolismo , Arabidopsis/genética , Selección Genética , Factores de Transcripción/genética , Alelos , Aminoácidos/química , Calmodulina/química , Mapeo Cromosómico , Cromosomas de las Plantas/ultraestructura , Evolución Molecular , Frecuencia de los Genes , Estudios de Asociación Genética , Variación Genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Espectrofotometría
10.
Plant Cell ; 27(7): 1857-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26163573

RESUMEN

For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Respuesta al Choque Térmico/genética , Sitios de Carácter Cuantitativo/genética , Fertilidad/genética , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Variación Genética , Haplotipos/genética , Inflorescencia/genética , Patrón de Herencia/genética , Desequilibrio de Ligamiento/genética , Anotación de Secuencia Molecular , Mutación/genética , Tamaño de los Órganos/genética , Polen/genética , Polimorfismo de Nucleótido Simple/genética , Semillas/anatomía & histología , Semillas/genética , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...