Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Zool ; 69(6): 643-653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876648

RESUMEN

Reproductive traits are central to organismal fitness, and so the factors influencing patterns of reproduction and offspring survival are at the heart of biology. Making use of breeding data collected over 16 years at the King Khalid Wildlife Research Centre in Saudi Arabia, we investigated the reproductive biology of Arabian gazelles Gazella arabica. Offspring survival was mainly a function of birth weight, with heavier offspring having higher survival rates than lighter offspring. However, while sons were heavier than daughters, daughters had higher survival rates. We could not find evidence that giving birth to sons negatively impacts offspring weight in the following year. We uncovered large narrow-sense heritability (h2) in offspring weight at birth, while maternal effects (m2) on birth weight were of lesser importance. However, maternal effects on offspring survival were strong until weaning age, while paternal effects dominated survival to sexual maturity and first reproduction. We propose that variation in maternal postnatal care might overshadow the effects of maternal inheritance of birth weights, while the overall strong heritability of weight at birth and the paternal effects on survival illustrates strong variance in sire fitness based on genetic quality, suggesting a role for sexual selection by female mate choice in wild populations.

2.
Mol Ecol ; 32(24): 6809-6823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864542

RESUMEN

Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.


Asunto(s)
Metilación de ADN , Ecotipo , Animales , Metilación de ADN/genética , Genoma , Epigénesis Genética , Insectos/genética
3.
Nat Ecol Evol ; 6(12): 1952-1964, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280782

RESUMEN

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.


Asunto(s)
Insectos , Selección Genética , Animales , Teorema de Bayes , Insectos/genética , Genoma , Genómica
4.
Ecol Evol ; 12(5): e8872, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600676

RESUMEN

Cannibalism, the act of preying on and consuming a conspecific, is taxonomically widespread, and putatively important in the wild, particularly in teleost fishes. Nonetheless, most studies of cannibalism in fishes have been performed in the laboratory. Here, we test four predictions for the evolution of cannibalism by conducting one of the largest assessments of cannibalism in the wild to date coupled with a mesocosm experiment. Focusing on mosquitofishes and guppies, we examined 17 species (11,946 individuals) across 189 populations in the wild, spanning both native and invasive ranges and including disparate types of habitats. We found cannibalism to be quite rare in the wild: most populations and species showed no evidence of cannibalism, and the prevalence of cannibalism was typically less than 5% within populations when it occurred. Most victims were juveniles (94%; only half of these appeared to have been newborn offspring), with the remaining 6% of victims being adult males. Females exhibited more cannibalism than males, but this was only partially explained by their larger body size, suggesting greater energetic requirements of reproduction likely play a role as well. We found no evidence that dispersal-limited environments had a lower prevalence of cannibalism, but prevalence was greater in populations with higher conspecific densities, suggesting that more intense resource competition drives cannibalistic behavior. Supporting this conclusion, our mesocosm experiment revealed that cannibalism prevalence increased with higher conspecific density and lower resource levels but was not associated with juvenile density or strongly influenced by predation risk. We suggest that cannibalism in livebearing fishes is rare in the wild because preying on conspecifics is energetically costly and only becomes worth the effort when competition for other food is intense. Due to the artificially reduced cost of capturing conspecifics within confined spaces, cannibalism in captive settings can be much more frequent.

5.
Sci Total Environ ; 811: 152386, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34915006

RESUMEN

Invasive alien species (IAS) have become a major threat to ecosystems worldwide. From an evolutionary ecological perspective, they allow teasing apart the relative contributions of plasticity and evolutionary divergence in driving rapid phenotypic diversification. When IAS spread across extensive geographic ranges, climatic variation may represent a source of strong natural selection through overwinter mortality and summer heat stress. This could favour local adaptation, i.e., evolutionary divergence of certain traits. IAS, however, are likely to show plasticity in survival-related traits, and environmental fluctuation in their new distribution range could favour the maintenance of this pre-existing phenotypic plasticity. By contrast, sexually selected traits are more likely to undergo evolutionary divergence when components of sexual selection differ geographically. Here, using data from a common-garden rearing experiment of Western mosquitofish (Gambusia affinis Baird and Girard, 1853) from five populations across the species' invasive range in China, we show that invasive mosquitofish have retained plasticity in key physiological (thermal tolerances), morphological and life-history traits even 100 years after their introduction to China, but exhibit heritable population differences in several sexually selected traits, including the shape of the male copulatory organ. Adaptive plasticity of traits linked to immediate survival in different thermal environments-while likely responsible for the species' extraordinary invasion success-could slow down genetic evolution. Several sexually selected traits could diverge geographically and show rapid evolutionary change, e.g., because climate alters selective landscapes arising from mate competition as an indirect consequence of variation in overwinter mortality.


Asunto(s)
Ciprinodontiformes , Especies Introducidas , Adaptación Fisiológica , Animales , Evolución Biológica , Ecosistema , Masculino , Fenotipo
6.
Environ Pollut ; 290: 118023, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461415

RESUMEN

Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.


Asunto(s)
Contaminación por Petróleo , Poecilia , Animales , Ecosistema , Lagos , Conducta Predatoria
7.
Ecol Evol ; 11(9): 4379-4398, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976817

RESUMEN

Eastern mosquitofish (Gambusia holbrooki) are among the most widely introduced freshwater species globally. To gain a better understanding of feeding patterns in non-native populations, and which local factors may influence them at the population level, we carried out gut content analysis on 163 specimens from nine invasive populations in Italy and Spain. Based on previous studies, we predicted that (a) mosquitofish are omnivores with a preference for detritus and cladocerans; (b) they display size- and population-specific differences in gut morphologies and diet, with larger fish feeding more intensively over a wider range of prey items; and (c) some of the variation would be associated with differences in local environmental and climatic factors. Our results confirmed our first prediction, because mosquitofish fed on a variety of diet items, among which detritus and Cladocera dominated. However, not a single diet item was shared among all populations. Congruent with our second prediction, we further identified size- and population-specific differences in the occurrence of some diet items and gut morphologies. However, observed patterns in dietary habits did not seem to be driven by the environmental and climatic variables we had quantified. The fairly variable diet likely aids invasion success and helps explain the ubiquity of invasive mosquitofish across Italy and Spain, as mosquitofish seem to be able to rely on whatever a local habitat provides. We further propose that size-specific differences likely capture the substantial sexual size dimorphism (males are smaller than females), while population-specific differences are likely the result of differences in local prey abundance. The lack of an influence of temperature on dietary habits suggests that mosquitofish feeding ecology may be less impacted by rising temperatures than other freshwater fish species. If true, then this suggests climate change-induced effects may further exacerbate the competitive superiority of mosquitofish over native species in the future.

8.
Ecol Evol ; 11(24): 18369-18400, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003679

RESUMEN

AIM: Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. LOCATION: Global. METHODS: We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. RESULTS: We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous-especially in Europe. MAIN CONCLUSIONS: Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies.

9.
Sci Total Environ ; 726: 137908, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32481217

RESUMEN

One century after their introduction to Europe, eastern mosquitofish (Gambusia holbrooki) represent a natural experiment to determine the relative contributions of adaptive plasticity and rapid evolutionary change in creating large-scale geographic variation in phenotypes. We evaluated the population-genetic structure and invasion history based on allele length polymorphisms of 15 nuclear microsatellites, which we quantified for N = 660 individuals from 23 populations sampled in 2013 across the invasive range of G. holbrooki in Europe. We analysed body-shape and life-history variation in N = 1331 individuals from 36 populations, sampled in 2013 and 2017, and tested heritability of phenotypic differences in a subset of four populations using a common-garden experiment. The genetic structure of wild-caught individuals suggested a single introduction for all European mosquitofish, which were genetically impoverished compared to their native counterparts. We found some convergent patterns of phenotypic divergence across native and invasive climatic gradients (e.g., increased body size in colder/more northern populations); however, several phenotypic responses were not consistent between sampling years, pointing towards plastic phenotypes. Our analysis of common-garden reared individuals uncovered moderate heritability estimates only for two measures of male body size (intraclass correlation coefficient, ICC = 0.628 and 0.556) and offspring fat content (ICC = 0.734), while suggesting high levels of plasticity in most other phenotypic traits (ICC ≤ 0.407). Our results highlight the importance of phenotypic plasticity in invasive species during range expansions and demonstrate that strong selective pressures-in this case towards increased body size in colder environments-simultaneously promote rapid evolutionary divergence.


Asunto(s)
Ciprinodontiformes , Adaptación Fisiológica , Animales , Europa (Continente) , Especies Introducidas , Masculino , Fenotipo
10.
Sci Total Environ ; 730: 138912, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32402962

RESUMEN

Anthropogenic habitat alterations have the potential to affect both, ecological dynamics of communities and populations, as well as evolutionary processes within populations. Invasive species may benefit from anthropogenic disturbance, such as water pollution, to which they sometimes seem more resistant than native ones. They also allow investigating evolutionary divergence among populations occurring along pollution gradients. We assessed fish communities at 55 sampling sites in the degraded and heavily overstocked Mutara Rangelands of north-eastern Rwanda (upper Nile drainage), which receive pollution from domestic wastewater and cattle dung. Diverse fish communities became apparent that included invasive guppies (Poecilia reticulata, Poeciliidae), and canonical correspondence analyses found significant differentiation of community structures along several environmental parameters (condensed into principal components), including pollution-effects. As predicted, generalized linear models found guppies to have a higher likelihood of occurrence at polluted sites. Local abundances of guppies, however, decreased at polluted sites. Since guppies are color-polymorphic, and color patterns have a heritable basis, they allow inferences regarding both pollution-induced suppression of male ornamentation (e.g., through xenestrogens) and evolutionary population divergence. We thus quantified different ornament types (numbers and percent body surface cover). ANCOVAs uncovered several weak (based on effect strengths), but statistically significant pollution-effects and interactions with other environmental parameters. The direction of several interaction effects was similar for blue/black and red/orange ornaments, while white/iridescent ornaments responded dissimilarly. As responses differed between ornament types, they likely reflect evolutionary divergence due to site-specific alterations of selective regimes rather than developmental inhibition of male secondary sexual characters. We propose that pollution affects local fitness landscapes resulting, e.g., from predation and mate competition (as a function of local abundances), altogether driving evolutionary divergence of sexually selected traits. This study highlights how human activities not only impact ecological dynamics, but-mediated by altered Eco-Evo dynamics-might change the evolutionary trajectories of populations.


Asunto(s)
Poecilia , Animales , Evolución Biológica , Masculino , Rwanda , Contaminación del Agua
11.
Mol Ecol ; 28(24): 5315-5329, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31677202

RESUMEN

Multiple paternity (MP) increases offspring's genetic variability, which could be linked to invasive species' evolvability in novel distribution ranges. Shifts in MP can be adaptive, with greater MP in harsher/colder environments or towards the end of the reproductive season, but climate could also affect MP indirectly via its effect on reproductive life histories. We tested these hypotheses by genotyping N = 2,903 offspring from N = 306 broods of two closely related livebearing fishes, Gambusia holbrooki and Gambusia affinis. We sampled pregnant females across latitudinal gradients in their invasive ranges in Europe and China, and found more sires per brood and a greater reproductive skew towards northern sampling sites. Moreover, examining monthly sampling from two G. affinis populations, we found MP rates to vary across the reproductive season in a northern Chinese, but not in a southern Chinese population. While our results confirm an increase of MP in harsher/more unpredictable environments, path analysis indicated that, in both cases, the effects of climate are likely to be indirect, mediated by altered life histories. In both species, which rank amongst the 100 most invasive species worldwide, higher MP at the northern edge of their distribution probably increases their invasive potential and favours range expansions, especially in light of the predicted temperature increases due to global climate changes.


Asunto(s)
Ciprinodontiformes/genética , Especies Introducidas , Reproducción/genética , Animales , Geografía , Paternidad
12.
Curr Zool ; 64(2): 193-196, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30402059
13.
Sci Rep ; 8(1): 11164, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042477

RESUMEN

Invasive species that rapidly spread throughout novel distribution ranges are prime models to investigate climate-driven phenotypic diversification on a contemporary scale. Previous studies on adaptive diversification along latitudinal gradients in fish have mainly considered body size and reported either increased or decreased body size towards higher latitudes (i.e. Bergmann's rule). Our study is the first to investigate phenotypic divergence in multiple traits, including sexually selected traits (size and shape of the male copulatory organ, the gonopodium) of invasive Gambusia affinis in China. We studied body size, life history traits and morphological variation across populations spanning 17 degrees of latitude and 16 degrees of longitude. Even though we found phenotypic variation along climatic gradients to be strongest in naturally selected traits, some sexually selected traits also showed systematic gradual divergence. For example, males from southern populations possessed wider gonopodia with increased armament. Generally, males and females diverged in response to different components of climatic gradients (latitudinal or longitudinal variation) and in different trait suites. We discuss that not only temperature regimes, but also indirect effects of increased resource and mate competition (as a function of different extrinsic overwinter mortality rates) alter the selective landscape along climatic gradients.


Asunto(s)
Aclimatación/fisiología , Ciprinodontiformes/genética , Ciprinodontiformes/fisiología , Especies Introducidas , Fenotipo , Selección Genética/fisiología , Adaptación Fisiológica , Variación Anatómica/fisiología , Animales , Tamaño Corporal , China , Clima , Conducta Competitiva , Ciprinodontiformes/anatomía & histología , Femenino , Masculino , Repeticiones de Microsatélite/genética , Herencia Multifactorial , Análisis Multivariante , Filogeografía , Temperatura
14.
Biol Lett ; 14(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875208

RESUMEN

Only few fish species have successfully colonized subterranean habitats, but the underlying biological constraints associated with this are still poorly understood. Here, we investigated the influence of permanent darkness on spinal-column development in one species (Midas cichlid, Amphilophus citrinellus) with no known cave form, and one (Atlantic molly, Poecilia mexicana) with two phylogenetically young cave forms. Specifically, fish were reared under a normal light : dark cycle or in permanent darkness (both species). We also surveyed wild-caught cave and surface ecotypes of P. mexicana In both species, permanent darkness was associated with significantly higher rates of spinal deformities (especially in A. citrinellus). This suggests strong developmental (intrinsic) constraints on the successful colonization of subterranean environments in teleost fishes and might help explain the relative paucity of cave-adapted lineages. Our results add depth to our understanding of the aspects of selection driving trait divergence and maintaining reproductive isolation in cave faunas.


Asunto(s)
Cuevas , Oscuridad , Escoliosis/etiología , Adaptación Fisiológica , Animales , Evolución Biológica , Cíclidos , Ecotipo , Poecilia
15.
Genes (Basel) ; 9(5)2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724050

RESUMEN

Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.

16.
Mol Ecol ; 27(4): 843-859, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29368386

RESUMEN

Organisms adapted to physiochemical stressors provide ideal systems to study evolutionary mechanisms that drive adaptation and speciation. This review study focuses on livebearing fishes of the Poecilia mexicana species complex (Poeciliidae), members of which have repeatedly colonized hydrogen sulphide (H2 S)-rich springs. H2 S is a potent respiratory toxicant that creates extreme environmental conditions in aquatic ecosystems. There is also a rich history of research on H2 S in toxicology and biomedicine, which has facilitated the generation of a priori hypotheses about the proximate mechanisms of adaptation. Testing these hypotheses through the application of high-throughput genomic and transcriptomic analyses has led to the identification of the physiological underpinnings mediating adaptation to H2 S-rich environments. In addition, systematic natural history studies have provided a nuanced understanding of how the presence of a physiochemical stressor interacts with other sources of selection to drive evolutionary change in a variety of organismal traits, including physiology, morphology, behaviour and life history. Adaptation to extreme environments in P. mexicana also coincides with ecological speciation, and evolutionarily independent lineages span almost the full range of the speciation continuum from panmixia to complete reproductive isolation. Multiple mechanisms of reproductive isolation are involved in reducing gene flow between adjacent populations that are adapted to contrasting environmental conditions. Comparative studies among evolutionarily independent lineages within the P. mexicana species complex and, more recently, other members of the family Poeciliidae that have colonized H2 S-rich environments will provide insights into the factors facilitating or impeding convergent evolution, providing tangible links between micro-evolutionary processes and macro-evolutionary patterns.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Ambientes Extremos , Especiación Genética , Manantiales Naturales , Poecilia/genética , Poecilia/fisiología , Sulfuros/química , Animales , México , Filogenia
17.
Ecol Evol ; 7(16): 6570-6581, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861258

RESUMEN

Understanding whether and how ambient ecological conditions affect the distribution of personality types within and among populations lies at the heart of research on animal personality. Several studies have focussed on only one agent of divergent selection (or driver of plastic changes in behavior), considering either predation risk or a single abiotic ecological factor. Here, we investigated how an array of abiotic and biotic environmental factors simultaneously shape population differences in boldness, activity in an open-field test, and sociability/shoaling in the livebearing fish Poecilia vivipara from six ecologically different lagoons in southeastern Brazil. We evaluated the relative contributions of variation in predation risk, water transparency/visibility, salinity (ranging from oligo- to hypersaline), and dissolved oxygen. We also investigated the role played by environmental factors for the emergence, strength, and direction of behavioral correlations. Water transparency explained most of the behavioral variation, whereby fish from lagoons with low water transparency were significantly shyer, less active, and shoaled less than fish living under clear water conditions. When we tested additional wild-caught fish from the same lagoons after acclimating them to homogeneous laboratory conditions, population differences were largely absent, pointing toward behavioral plasticity as a mechanism underlying the observed behavioral differences. Furthermore, we found correlations between personality traits (behavioral syndromes) to vary substantially in strength and direction among populations, with no obvious associations with ecological factors (including predation risk). Altogether, our results suggest that various habitat parameters simultaneously shape the distribution of personality types, with abiotic factors playing a vital (as yet underestimated) role. Furthermore, while predation is often thought to lead to the emergence of behavioral syndromes, our data do not support this assumption.

18.
Mol Ecol ; 26(22): 6189-6205, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28786544

RESUMEN

How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping-by-sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species' history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large-scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.


Asunto(s)
Evolución Biológica , Variación Genética , Insectos/genética , Selección Genética , Adaptación Biológica/genética , Animales , California , Mapeo Cromosómico , Análisis por Conglomerados , Color , Ecosistema , Estudios de Asociación Genética , Genética de Población , Genotipo , Fenotipo , Pigmentación
19.
Nat Ecol Evol ; 1(4): 82, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28812654

RESUMEN

Speciation can involve a transition from a few genetic loci that are resistant to gene flow to genome-wide differentiation. However, only limited data exist concerning this transition and the factors promoting it. Here, we study phases of speciation using data from >100 populations of 11 species of Timema stick insects. Consistent with early phases of genic speciation, adaptive colour-pattern loci reside in localized genetic regions of accentuated differentiation between populations experiencing gene flow. Transitions to genome-wide differentiation are also observed with gene flow, in association with differentiation in polygenic chemical traits affecting mate choice. Thus, intermediate phases of speciation are associated with genome-wide differentiation and mate choice, but not growth of a few genomic islands. We also find a gap in genomic differentiation between sympatric taxa that still exchange genes and those that do not, highlighting the association between differentiation and complete reproductive isolation. Our results suggest that substantial progress towards speciation may involve the alignment of multi-faceted aspects of differentiation.

20.
Sci Am ; 316(4): 54-59, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28296854
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...