RESUMEN
Biomass cookstove food preparation is linked to aero-digestive cancers, mediated by ingested and inhaled carcinogens (e.g., heterocyclic amines, and polycyclic aromatic hydrocarbons). We investigated the association between gastric adenocarcinoma, wood cookstove use, H. pylori CagA infection and risk modification by variants in genes that metabolize and affect the internal dose of carcinogens. We conducted a population-based, case-control study (814 incident cases, 1049 controls) in rural Honduras, a high-incidence region with a homogeneous diet and endemic H. pylori infection, primarily with the high-risk CagA genotype. We investigated factors including wood cookstove use, H. pylori CagA serostatus, and 15 variants from 7 metabolizing genes, and the interactions between wood stove use and the genetic variants. Male sex (OR 2.0, 1.6-2.6), age (OR 1.04, 1.03-1.05), wood cookstove use (OR 2.3, 1.6-3.3), and CagA serostatus (OR 3.5, 2.4-5.1) and two SNPs in CYP1B1 (rs1800440 and rs1056836) were independently associated with gastric cancer in multivariate analysis. In the final multivariate model, a highly significant interaction (OR 3.1, 1.2-7.8) was noted between wood cookstove use and the rs1800440 metabolizing genotype, highlighting an important gene-environment interaction. Lifetime wood cookstove use associates with gastric cancer risk in the high-incidence regions of Central America, and the association is dependent on the rs1800440 genotype in CYP1B1. H. pylori CagA infection, wood cookstove use and the rs1800440 genotype, all of which are highly prevalent, informs who is at greatest risk from biomass cookstove use.